TensorFlow
文章平均质量分 91
marsjhao
每天进步一点!
展开
-
TensorFlow上实现AutoEncoder自编码器
一、概述AutoEncoder大致是一个将数据的高维特征进行压缩降维编码,再经过相反的解码过程的一种学习方法。学习过程中通过解码得到的最终结果与原数据进行比较,通过修正权重偏置参数降低损失函数,不断提高对原数据的复原能力。学习完成后,前半段的编码过程得到结果即可代表原数据的低维“特征值”。通过学习得到的自编码器模型可以实现将高维数据压缩至所期望的维度,原理与PCA相似。二、模型原创 2017-04-02 09:06:41 · 24451 阅读 · 2 评论 -
TensorFlow应用之进阶版卷积神经网络CNN在CIFAR-10数据集上分类
一、概述1. 数据集简介本文使用的数据集是CIFAR-10,这是一个经典的数据集,包含了60000张32*32的彩色图像,其中训练集50000张,测试集10000张,如同其名字,CIFAR-10数据集一共标注为10类,每一类6000张图片,这10类分别是airplane、automobile、bird、cat、deer、dog、frog、horse、ship和truck。类别之间没有重原创 2017-06-07 15:52:50 · 18375 阅读 · 5 评论 -
TensorFlow实现Batch Normalization
一、BN(Batch Normalization)算法1. 对数据进行归一化处理的重要性神经网络学习过程的本质就是学习数据分布,在训练数据与测试数据分布不同情况下,模型的泛化能力就大大降低;另一方面,若训练过程中每批batch的数据分布也各不相同,那么网络每批迭代学习过程也会出现较大波动,使之更难趋于收敛,降低训练收敛速度。对于深层网络,网络前几层的微小变化都会被网络累积放大,则训练数原创 2017-06-06 11:29:19 · 13669 阅读 · 0 评论 -
TensorFlow变量管理
一、TensorFlow变量管理1. TensorFLow还提供了tf.get_variable函数来创建或者获取变量,tf.variable用于创建变量时,其功能和tf.Variable基本是等价的。tf.get_variable中的初始化方法(initializer)的参数和tf.Variable的初始化过程也类似,initializer函数和tf.Variable的初始化方法是一一对原创 2017-06-01 11:40:24 · 8289 阅读 · 3 评论 -
TensorFlow模型保存和提取方法
一、TensorFlow模型保存和提取方法1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取。tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,saver.save(sess,"Model/model.ckpt"),实际在这个文件目录下会生成4个人文件:checkpoint文件保存了一个录下多有的模原创 2017-06-01 11:25:25 · 83265 阅读 · 3 评论 -
TensorFlow上实现卷积神经网络CNN
一、卷积神经网络CNN简介卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会原创 2017-05-06 10:58:42 · 2195 阅读 · 0 评论 -
TensorFlow损失函数专题
一、分类问题损失函数——交叉熵(crossentropy)交叉熵刻画了两个概率分布之间的距离,是分类问题中使用广泛的损失函数。给定两个概率分布p和q,交叉熵刻画的是两个概率分布之间的距离:我们可以通过Softmax回归将神经网络前向传播得到的结果变成交叉熵要求的概率分布得分。在TensorFlow中,Softmax回归的参数被去掉了,只是一个额外的处理层,将神经网络的输出变成一个概原创 2017-05-22 21:09:59 · 41729 阅读 · 7 评论 -
TensorFlow神经网络优化策略
在神经网络模型优化的过程中,会遇到许多问题,比如如何设置学习率的问题,我们可通过指数衰减的方式让模型在训练初期快速接近较优解,在训练后期稳定进入最优解区域;针对过拟合问题,通过正则化的方法加以应对;滑动平均模型可以让最终得到的模型在未知数据上表现的更加健壮。一、学习率的设置学习率设置既不能过大,也不能过小。TensorFlow提供了一种更加灵活的学习率设置方法——指数衰减法。该方法实现了指原创 2017-05-24 17:21:07 · 5585 阅读 · 0 评论 -
TensorFlow上实现Softmax回归模型
一、概述及完整代码对MNIST(MixedNational Institute of Standard and Technology database)这个非常简单的机器视觉数据集,Tensorflow为我们进行了方便的封装,可以直接加载MNIST数据成我们期望的格式.本程序使用Softmax Regression训练手写数字识别的分类模型.先看完整代码:import tensor原创 2017-03-19 21:37:11 · 2495 阅读 · 0 评论 -
TensorFlow上实现MLP多层感知机模型
一、多层感知机简介Softmax回归可以算是多分类问题logistic回归,它和神经网络的最大区别是没有隐含层。理论上只要隐含节点足够多,即时只有一个隐含层的神经网络也可以拟合任意函数,同时隐含层越多,越容易拟合复杂结构。为了拟合复杂函数需要的隐含节点的数目,基本上随着隐含层的数量增多呈指数下降的趋势,也就是说层数越多,神经网络所需要的隐含节点可以越少。层数越深,概念越抽象,需要背诵的知识点就原创 2017-03-26 10:04:03 · 9373 阅读 · 0 评论 -
TensorFlow搭建神经网络最佳实践样例
一、TensorFlow完整样例 在MNIST数据集上,搭建一个简单神经网络结构,一个包含ReLU单元的非线性化处理的两层神经网络。在训练神经网络的时候,使用带指数衰减的学习率设置、使用正则化来避免过拟合、使用滑动平均模型来使得最终的模型更加健壮。程序将计算神经网络前向传播的部分单独定义一个函数inference,训练部分定义一个train函数,再定义一个主函数main。完整...原创 2017-06-01 14:35:21 · 9508 阅读 · 0 评论