转自:http://blog.csdn.net/yuucyf/article/details/6679149
就是这道题目:http://my.oschina.net/lgmcolin/blog/112657
题目:
写一个程序,要求功能,求出用1、2、5这三个数不同个数组合的和为100的组合数。
如100个1是一个组合,20个5是另外一个组合。
思路一:
看到这样的问题我们首先会想到最简单穷举法,三层循环就可以解决了。
代码如下:
- /*=============================
- Copyright by yuucyf. 2011.08.11
- ==============================*/
- #include "stdafx.h"
- #include <assert.h>
- #include <iostream>
- using namespace std;
- int Sum_Combination(int nSum)
- {
- int nCnt = 0;
- int x, y, z;
- for (x = 0; x <= (nSum/1); x++)
- {
- for (y = 0; y <= (nSum/2); y++)
- {
- for (z = 0; z <= (nSum/5); z++)
- {
- if ((x + 2*y + 5*z) == nSum)
- nCnt++;
- }
- }
- }
- return nCnt;
- }
- int _tmain(int argc, _TCHAR* argv[])
- {
- cout << "用1,2,5不同的个数组合和为100的组合个数为:" << Sum_Combination(100) << endl;
- return 0;
- }
思路二:
像上面的解法效率太低了,循环次数为101 * 51 * 21,这其实就是个数学问题,就是求 x + 2y + 5z = 100解的个数。变化一下,x + 5z = 100 - 2y,这个式子表明 x + 5z只能是偶数,以z为循环变量,有下述规律。
z=0, x=100, 98, 96, ... 0
z=1, x=95, 93, ..., 1
z=2, x=90, 88, ..., 0
z=3, x=85, 83, ..., 1
z=4, x=80, 78, ..., 0
......
z=19, x=5, 3, 1
z=20, x=0
因此,组合总数为100以内的偶数+95以内的奇数+90以内的偶数+...+5以内的奇数+1,
即为:(51+48)+(46+43)+(41+38)+(36+33)+(31+28)+(26+23)+(21+18)+(16+13)+(11+8)+(6+3)+1
第二种方法的循环次数仅为21次。
代码如下:
- /*=============================
- Copyright by yuucyf. 2011.08.11
- ==============================*/
- #include "stdafx.h"
- #include <assert.h>
- #include <iostream>
- using namespace std;
- int Sum_Combination1(int nSum)
- {
- int nCnt = 0;
- for (int i32I = 0; i32I <= nSum; i32I += 5)
- {
- nCnt += (i32I + 2)/2;
- }
- return nCnt;
- }
- int _tmain(int argc, _TCHAR* argv[])
- {
- cout << "用1,2,5不同的个数组合和为100的组合个数为:" << Sum_Combination1(100) << endl;
- return 0;
- }