杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍,更安全地服务大众。
不吉利的数字为所有含有4或62的号码。例如:
62315 73418 88914
都属于不吉利号码。但是,61152虽然含有6和2,但不是62连号,所以不属于不吉利数字之列。
你的任务是,对于每次给出的一个牌照区间号,推断出交管局今次又要实际上给多少辆新的士车上牌照了。
1 100 0 0
80
数位dp以后要走递归路了,曾经写过的一大堆递推,虽然有些不舍,但不得不放弃,坚持着去理解递推到现在终于还是放弃了,递归写起来就是简单,只需要考虑边界和状态转移就ok,效率就是比递推高,特别是对复杂的数位dp来说,写递推的没个几年的代码经历洗礼真的做不到完全搞定(神牛除外),递推的暂且放下了,任何事都是有舍有得,数位dp是要彻底改掉代码习惯了,曾经写过的递推也不会删掉了,有种重新来过的感觉,时间的确是耗费了,但是没什么进展,所以得寻求改变,再见,递推。
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
using namespace std;
typedef long long ll;
int dp[10][3];
/*
dp[i][0]:前i位不含不吉利数的个数。
dp[i][1]:前i位不含不吉利数且i+1位是6的个数。
dp[i][2]:前i位含不吉利数的个数。
*/
int digit[10];
int dfs(int pos,int st,bool limit)
{
if(pos==0)return st==2;
if(!limit&&dp[pos][st]!=-1)return dp[pos][st];
int ans=0,end=limit?digit[pos]:9;
for(int i=0; i<=end; i++)
if((st==1&&i==2)||i==4||st==2)
ans+=dfs(pos-1,2,limit&&(i==end));
else if(i==6)
ans+=dfs(pos-1,1,limit&&(i==end));
else ans+=dfs(pos-1,0,limit&&(i==end));
if(!limit)
dp[pos][st]=ans;
return ans;
}
int get(int x)
{
int bj=0;
while(x)
digit[++bj]=x%10,x/=10;
return dfs(bj,0,1);
}
int main()
{
int l,r;
memset(dp,-1,sizeof(dp));
while(~scanf("%d%d",&l,&r)&&l+r)
printf("%d\n",r-l+1-(get(r)-get(l-1)));
return 0;
}
初学时用递推写的:
初识数位dp,感觉还是可以接受的,对数字每一位上进行dp操作,数位dp常用的一种解决方式是:比如需要统计区间[l,r]的满足题意的数的个数,这往往可以转换成求[0,r]-[0,l),那么此题就特别适合这样的做法!然后接着就是dp部分的实现:
void initial()
{
memset(dp,0,sizeof(dp));
dp[0][0]=1;
for(int i=1;i<=7;i++)
{
for(int j=0;j<10;j++)
{
for(int k=0;k<10;k++)
{
if(j!=4&&!(j==6&&k==2))
dp[i][j]+=dp[i-1][k];
}
}
}
}
需注意的是dp[i][j]表示以j开头的i位数字其中不含62和4的数有多少个,其中的k表示第i-1位的数值(因为62占两位嘛),还得注意的是
j==6&&k==2
这句话,因为i-1位表示的是2,i位表示6,则说明记录dp值的时候是从个位往上走的,这个顺序得对应好!(刚开始就是这个顺序错了总是错!!!)
第i位为j的dp值记录下来了之后我们就可以开始求从0到n的所需值了。
这个dp值需要深入理解,否则很难进行下一步,会觉得下一步莫名其妙,我说一下自己的见解,这个dp值我直接举列吧,比如dp[2][4]是十位是4, 但表示的是40到50的总数;dp[2][0]是十位是0,表示0到10的总数;dp[4][2]是千位是2,但表示的dp值是2000到3000的总数;……以此类推……
因此!!!我们求一个0到n的数时,比如68,那么我们首先要求dp[2][5]+dp[2][4]+dp[2][3]+dp[2][2]+dp[2][1]+dp[2][0]这算出了0到60的总数(本来dp[2][4]不该计算进去的,但实际dp[][4]都为0,所以记进去无所谓,便于理解),再算60到68的:(是60到68,并非0到8!)dp[1][0]+dp[1][1]+dp[1][3]+dp[1][4]+dp[1][5]+dp[1][6]+dp[1][7](这个dp[][4]和上一个一样,本不该记录的),注意这个个位少了一个dp[1][2],为什么?!呼应上一行的记录60到68,所以首先62不满足条件被刷了!(之所以被刷更是因为它的数值并不是0!!)
多理解这题,看似好理解dp值,实际上里面的知识让人觉得很丰富!
#include<iostream>
#include<algorithm>
#include <cstdio>
#include <cmath>
#include<cstring>
using namespace std;
int dp[10][10];
void initial()
{
memset(dp,0,sizeof(dp));
dp[0][0]=1;
for(int i=1;i<=7;i++)
{
for(int j=0;j<10;j++)
{
for(int k=0;k<10;k++)
{
if(j!=4&&!(j==6&&k==2))
dp[i][j]+=dp[i-1][k];
}
}
}
}
int solve(int n)
{
int digit[10]={0},x=0;
while(n>0)
{
digit[++x]=n%10;
n/=10;
}
int ans = 0;
for(int i=x;i>0;i--)
{
for(int j=0;j<digit[i];j++)
{
if(!(digit[i+1]==6&&j==2))
ans+=dp[i][j];
//cout<<i<<' '<<j<<' '<<dp[i][j]<<endl;
}
if(digit[i]==4||(digit[i]==2&&digit[i+1]==6))
break;///注意这里!如果我们求【0,1236223】那么如果到了求【0,12362】的时候我们还需要继续往下求吗?随便下一位怎么变化不都是【0,***62】吗?有了62不都是得刷掉吗?所以直接break!
}
return ans;
}
int main ()
{
initial();
/* for(int i=1;i<=7;i++)
{
for(int j=0;j<10;j++)
cout<<dp[i][j]<<' ';
cout<<endl;
}*/
int l,r;
while(cin>>l>>r&&!(l==0&&r==0))
{
cout<<solve(r+1)-solve(l)<<endl;
}
return 0;
}