Description
154. Factorial
time limit per test: 0.25 sec.
memory limit per test: 4096 KB
memory limit per test: 4096 KB
input: standard input
output: standard output
output: standard output
You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero on the trail.
Input
One number Q written in the input (0<=Q<=10^8).
Output
Write "No solution", if there is no such number N, and N otherwise.
Sample test(s)
Input
2
Output
10
题意为输入一个数表示某阶乘的数字末尾0的个数,让你找出最小的那个n的阶乘。由末尾有0想到必然有因子2和5!
然而如果有了因子5那么因子2一定存在,所以我们要做的就是寻找因子5!仔细找找规律会发现只有乘到5的倍数的阶
乘时才会出现一段阶乘里面又新增了因子5。(这个靠自己仔细琢磨,想清楚了自然有思路,并没有什么难点)。
#include <iostream>
#include<memory.h>
using namespace std;
int main()
{
int n;
cin>>n;
if(n==0)cout<<1<<endl;
else
{
int t=0;
for(int i=5;t<n;i+=5)
{
int x=i,num=0;
while(x%5==0)
x/=5,
num++;
t+=num;
if(t==n)
{
cout<<i<<endl;break;
}
}
if(t!=n)cout<<"No solution"<<endl;
}
return 0;
}