KM算法模板

202 篇文章 0 订阅
123 篇文章 0 订阅

想看更多模板?请点击:http://blog.csdn.net/martinue/article/category/6268283

这个模板是图论书上的那个,书上的代码有错误,在网上各种查找之后finally把这个模板搞对了!match[]数组保存匹配上的左右集合,是对应坐标的,在函数里面开的那个l[]数组是存每个点的具体匹配流量,m,n为左右集合的大小,tu[][]是邻接矩阵,存边的权值。

const int inf=1e9,maxn=510;
int KM(int m,int n,int tu[][maxn],int *match1,int *match2)
{
    int s[maxn],t[maxn],l1[maxn],l2[maxn],p,q,ret=0,i,j,k;
    ///l1为左边的匹配分量,l2是右边的匹配分量
    for(i=0; i<m; i++)
    {
        for(l1[i]=-inf,j=0; j<n; j++)
            l1[i]=tu[i][j]>l1[i]?tu[i][j]:l1[i];
        if(l1[i]==-inf)
            return -1;
    }
    for(i=0; i<n; l2[i++]=0);
    memset(match1,-1,sizeof(int)*n);
    memset(match2,-1,sizeof(int)*n);
    for(i=0; i<m; i++)
    {
        memset(t,-1,sizeof(int)*n);
        for(s[p=q=0]=i; p<=q&&match1[i]<0; p++)
        {
            for(k=s[p],j=0; j<n&&match1[i]<0; j++)
                if(l1[k]+l2[j]==tu[k][j]&&t[j]<0)
                {
                    s[++q]=match2[j],t[j]=k;
                    if(s[q]<0)
                        for(p=j; p>=0; j=p)
                            match2[j]=k=t[j],p=match1[k],match1[k]=j;
                }
        }
        if(match1[i]<0)
        {
            for(i--,p=inf,k=0; k<=q; k++)
                for(j=0; j<n; j++)
                    if(t[j]<0&&l1[s[k]]+l2[j]-tu[s[k]][j]<p)
                        p=l1[s[k]]+l2[j]-tu[s[k]][j];
            for(j=0; j<n; l2[j]+=t[j]<0?0:p,j++);
            for(k=0; k<=q; l1[s[k++]]-=p);
        }
    }
    for(i=0; i<m; i++)
        ret+=tu[i][match1[i]];
    return ret;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
第4章: 插值 函数名 功能 Language 求已知数据点的拉格朗日插值多项式 Atken 求已知数据点的艾特肯插值多项式 Newton 求已知数据点的均差形式的牛顿插值多项式 Newtonforward 求已知数据点的前向牛顿差分插值多项式 Newtonback 求已知数据点的后向牛顿差分插值多项式 Gauss 求已知数据点的高斯插值多项式 Hermite 求已知数据点的埃尔米特插值多项式 SubHermite 求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值 SecSample 求已知数据点的二次样条插值多项式及其插值点处的值 ThrSample1 求已知数据点的第一类三次样条插值多项式及其插值点处的值 ThrSample2 求已知数据点的第二类三次样条插值多项式及其插值点处的值 ThrSample3 求已知数据点的第三类三次样条插值多项式及其插值点处的值 BSample 求已知数据点的第一类B样条的插值 DCS 用倒差商算法求已知数据点的有理分式形式的插值分式 Neville 用Neville算法求已知数据点的有理分式形式的插值分式 FCZ 用倒差商算法求已知数据点的有理分式形式的插值分式 DL 用双线性插值求已知点的插值 DTL 用二元三点拉格朗日插值求已知点的插值 DH 用分片双三次埃尔米特插值求插值点的z坐标 第5章: 函数逼近 Chebyshev 用切比雪夫多项式逼近已知函数 Legendre 用勒让德多项式逼近已知函数 Pade 用帕德形式的有理分式逼近已知函数 lmz 用列梅兹算法确定函数的最佳一致逼近多项式 ZJPF 求已知函数的最佳平方逼近多项式 FZZ 用傅立叶级数逼近已知的连续周期函数 DFF 离散周期数据点的傅立叶逼近 SmartBJ 用自适应分段线性法逼近已知函数 SmartBJ 用自适应样条逼近(第一类)已知函数 multifit 离散试验数据点的多项式曲线拟合 LZXEC 离散试验数据点的线性最小二乘拟合 ZJZXEC 离散试验数据点的正交多项式最小二乘拟合 第6章: 矩阵特征值计算 Chapoly 通过求矩阵特征多项式的根来求其特征值 pmethod 幂法求矩阵的主特征值及主特征向量 rpmethod 瑞利商加速幂法求对称矩阵的主特征值及主特征向量 spmethod 收缩法求矩阵全部特征值 ipmethod 收缩法求矩阵全部特征值 dimethod 位移逆幂法求矩阵离某个常数最近的特征值及其对应的特征向量 qrtz QR基本算法求矩阵全部特征值 hessqrtz 海森伯格QR算法求矩阵全部特征值 rqrtz 瑞利商位移QR算法求矩阵全部特征值 第7章: 数值微分 第8章: 数值积分 第9章: 方程求根 .............................. .............. 第17章: 数据统计和分析

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值