题目1 . 基本斐波那契
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。
n<=39
f
(
0
)
=
0
f(0) = 0
f(0)=0
f
(
1
)
=
1
f(1) = 1
f(1)=1
f
(
n
)
=
f
(
n
−
1
)
+
f
(
n
−
2
)
f(n) = f(n-1)+f(n-2)
f(n)=f(n−1)+f(n−2)
递归不写了。写个非递归
class Solution:
def Fibonacci(self, n):
# write code here
b,c = 0,1
if n ==0:
return 0
if n ==1:
return 1
for i in range(2,n+1):
result = b+c
b = c
c = result
return result
递归的话。。运行会超时:
class Solution:
def Fibonacci(self, n):
if n == 0:
return 0
if n ==1:
return 1
return self.Fibonacci(n-1)+self.Fibonacci(n-2)
题目2:跳台阶
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
f(1) = 1
f(2) = 2
f(n) = f(n-1)+f(n-2)
def Jump(n):
if n ==0:
return 0
if n == 1:
return 1
if n ==2:
return 2
f_1 = 1
f_2 = 2
while n >2:
result = f_1+f_2
f_1 = f_2
f_2 = result
n -= 1
return result
题目3: 变态跳台阶
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
f(1) = 1
f(2) = 1+f(1) =2
f(3) = 1+f(1)+f(2) = 4
f(4) = 1+f(1)+f(2)+f(3) = 8
f(n) = 1+f (1)+f(2)+…+f(n-1) = 2^(n-1)
可以直接按规律写:
# -*- coding:utf-8 -*-
class Solution:
def jumpFloorII(self, number):
# write code here
if number == 0 or number ==1:
return 1
else:
return 2**(number-1)
也可以给将number= 1开始做个备忘录,做累加:
# -*- coding:utf-8 -*-
class Solution:
def jumpFloorII(self, number):
if number == 0 or number ==1:
return 1
result = [1]
for i in range(1,number):
# f(n) = 1+f (1)+f(2)+...+f(n-1)
result.append(1 + sum(result[:i]))
return result[number-1]
题目4: 矩形覆盖
可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
n = 1: f(1) = 1
n = 2: f(2) = 2
f(n) = f(n-1)+f(n-2)
上式中,f(n-1)表示大矩形第一个21 用一个21的小矩形竖着覆盖之后剩余的部分,f(n-2)表示大矩形的第一个22用两个21的小矩形横着覆盖之后剩余的部分。
# -*- coding:utf-8 -*-
class Solution:
def rectCover(self, number):
if number == 0 :
return 0
if number ==1 :
return 1
if number ==2:
return 2
n_1 = 1
n_2 = 2
while number >2:
result = n_1+n_2
n_1 = n_2
n_2 = result
number -=1
return result