【刷题日记】leetcode1135 最低成本连通所有城市 python

博客讲述了如何解决LeetCode中的1135题,即在地图上连接所有城市以达到最小成本的连通状态。文章提到了最小生成树的概念,并指出可以采用Prim算法或Kruskal算法来解决。作者还提及了在判断边的添加是否会形成环时,需要使用到并查集这一数据结构。最后,博主推荐了一个关于并查集的阅读资料。
摘要由CSDN通过智能技术生成

leetcode原题描述为:
地图上有 N 座城市,它们按以 1 到 N 的次序编号。

可连接的选项 conections中每个选项 conections[i] = [city1, city2, cost] 表示将城市 city1 和城市 city2 连接所要的成本。(连接是双向的,也就是说城市 city1 和城市 city2 相连也同样意味着城市 city2 和城市 city1 相连)。

返回使得每对城市间都存在将它们连接在一起的连通路径(可能长度为 1 的)最小成本。该最小成本应该是所用全部连接代价的综合。如果根据已知条件无法完成该项任务,则请你返回 -1。

示例1:

输入:N = 3, conections = [[1,2,5],[1,3,6],[2,3,1]]
输出:6
解释:
选出任意 2 条边都可以连接所有城市,我们从中选取成本最小的 2 条。

示例2:

输入:N = 4, conections = [[1,2,3],[3,4,4]]
输出:-1
解释:
即使连通所有的边,也无法连接所有城市。

其实就是最小生成树问题。
可以使用Prim算法或者Krustal算法来解决最小生成树问题(简单示例:图基础知识最小生成树,详细示例:Krustal详解</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值