PTA-Python
平常本人一直用C++刷题,老是觉得python的速度慢,在同样的时间限制下表现不如C++,尤其python的for循环速度慢。今天居然看到一题对python有时间优待的题,试一下用python刷题
题目:L2-039 清点代码库
上图转自新浪微博:“阿里代码库有几亿行代码,但其中有很多功能重复的代码,比如单单快排就被重写了几百遍。请设计一个程序,能够将代码库中所有功能重复的代码找出。各位大佬有啥想法,我当时就懵了,然后就挂了。。。”
这里我们把问题简化一下:首先假设两个功能模块如果接受同样的输入,总是给出同样的输出,则它们就是功能重复的;其次我们把每个模块的输出都简化为一个整数(在 int 范围内)。于是我们可以设计一系列输入,检查所有功能模块的对应输出,从而查出功能重复的代码。你的任务就是设计并实现这个简化问题的解决方案。
输入格式:
输入在第一行中给出 2 个正整数,依次为 N(≤ 1 0 4 10^4 104)和 M(≤ 1 0 2 10^2 102),对应功能模块的个数和系列测试输入的个数。
随后 N 行,每行给出一个功能模块的 M 个对应输出,数字间以空格分隔。
输出格式:
首先在第一行输出不同功能的个数 K。随后 K 行,每行给出具有这个功能的模块的个数,以及这个功能的对应输出。数字间以 1 个空格分隔,行首尾不得有多余空格。输出首先按模块个数非递增顺序,如果有并列,则按输出序列的递增序给出。
注:所谓数列 A 1 , . . . , A M { A_1, ..., A_M} A1,...,AM 比 B 1 , . . . , B M { B_1, ..., B_M} B1,...,BM 大,是指存在 1 ≤ i < M 1≤i<M 1≤i<M,使得 A 1 = B 1 , . . . , A i = B i A_1=B_1,...,A_i=B_i A1=B1,...,Ai=Bi成立,且 A i + 1 > B i + 1 A_{i+1}>B_{i+1} Ai+1>Bi+1。
输入样例:
7 3
35 28 74
-1 -1 22
28 74 35
-1 -1 22
11 66 0
35 28 74
35 28 74
输出样例:
4
3 35 28 74
2 -1 -1 22
1 11 66 0
1 28 74 35
代码要求
代码长度限制:16KB
语言 | 时间限制 | 内存限制 |
---|---|---|
Java(javac) | 1500 ms | 128 MB |
Python(python3) | 1500 ms | 64 MB |
其他编译器 | 500 ms | 64 MB |
感觉这个要求Python3
应该可以过的
思路
输入的序列既可以看做字符串"35 28 74"
也可以看做元祖(35, 28, 74)
这两个都可以作为dict
的key
,因此可以用dict
统计次数。
考虑到最后需要排序输出,用元祖tuple
方便一些,可以用元祖把次数和输入封装在一起,调用Python
标准库的sort
排序。
直接存一个dict{key=tuple, value=int}
,统计次数后将它转换为list[tuple(-value,key)]
,这里将value
取负号可以保证排序的一致性。注意最后输出的时候将value
在取负变回来。
Python3
中排序函数sort
取消了cmp
这一参数,只允许输入key
,可以引入cmp_to_key
这一函数来处理。
代码
N, M = input().split()
N, M = int(N), int(M)
count_dict = dict() # 统计各种输入的次数
while N > 0:
N -= 1
tmp = input().split()
tmp = tuple(int(x) for x in tmp) # 把str转成tuple 由于str和tuple都是可hash的,所以都可以作为dict的key
count_dict[tmp] = count_dict.get(tmp,0) + 1 # 统计参数
# 比较函数格式 小于返回-1 大于返回1 相同返回0
def comp(a, b):
if a < b:
return -1
elif a > b:
return 1
else:
return 0
# 对于不定长度的比较
def rcomp(a,b):
flag,ptr = 0,0 # 正常来说需要限制ptr的上限
while flag == 0: # 但是本题中不存在完全相同的输入(相同的已经被统计在一起了)
flag = comp(a[ptr],b[ptr]) # 所以排序一定可以终止
ptr += 1
return flag
from functools import cmp_to_key # 引入转换函数
toput = [tuple([-v])+tuple(k) for k,v in count_dict.items()] # 完全tuple化
toput.sort(key=cmp_to_key(rcomp)) # 排序
print(len(toput))
for item in toput: # 按排序后的顺序输出
print("{} {}".format(-item[0]," ".join(str(x) for x in item[1:])))
最终成功通过
1500ms 还是比较宽松的要求