待解决的概率论题目
来自《概率论与数理统计》荣腾中,第二版上的第四章A组习题11,我觉得这一题有一定难度。
概率论基本知识
- ∫ − ∞ + ∞ e − x 2 d x = π (1) \int _{-\infty}^{+\infty}{e^{-x^2}dx}=\sqrt{\pi} \tag{1} ∫−∞+∞e−x2dx=π(1)
- f ( x , y ) = 1 2 π σ X σ Y 1 − ρ 2 exp ( − 1 2 ( 1 − ρ 2 ) [ ( x − μ X ) 2 σ X 2 − 2 ρ ( x − μ X ) ( y − μ Y ) σ X σ Y + ( y − μ Y ) 2 σ Y 2 ] ) f(x,y) = {\frac {1}{2\pi \sigma _{X}\sigma _{Y}{\sqrt {1-\rho ^{2}}}}}\exp \left(-{\frac {1}{2(1-\rho ^{2})}}\left[{\frac {(x-\mu _{X})^{2}}{\sigma _{X}^{2}}}-{\frac {2\rho (x-\mu _{X})(y-\mu _{Y})}{\sigma _{X}\sigma _{Y}}+{\frac {(y-\mu _{Y})^{2}}{\sigma _{Y}^{2}}}}\right]\right) f(x,y)=2πσXσY1−ρ21exp(−2(1−ρ2)1[σX2(x−μX)2−σXσY2ρ(x−μX)(y−μY)+σY2(y−μY)2])
- E ( a X + b ) = a E ( X ) + b (2) E(aX+b) = aE(X)+b \tag{2} E(aX+b)=aE(X)+b(2)
- E ( x ) = ∫ − ∞ + ∞ x f ( x ) d x (3) E(x) = \int _{-\infty}^{+\infty}xf(x)dx \tag{3} E(x)=∫−∞+∞xf(x)dx(3)
(1)式可以由夹挤定理和二重积分证明,也可以化为伽马函数 Γ ( x ) \Gamma{(x)} Γ(x)1进行计算,为了便于计算,这里给出一个广义的版本
∫ − ∞ + ∞ e − a ( x + b ) 2 d x = π a (4) \int _{-\infty }^{+\infty }e^{-a(x+b)^{2}}\,dx={\sqrt {\frac {\pi }{a}}} \tag{4} ∫−∞+∞e−a(x+b)2dx=aπ(4)
第2条是二元正态分布的概率密度函数,不得不说,课本上给出的这个形式让人有一种无法完成积分的感觉,这里稍微改变一下形式
f ( x , y ) = 1 2 π σ X σ Y 1 − ρ 2 exp [ − 1 2 ( 1 − ρ 2 ) ( y − μ Y σ Y − ρ x − μ X σ X ) 2 − ( x − μ X ) 2 2 σ X 2 ] f(x,y) = {\frac {1}{2\pi \sigma _{X}\sigma _{Y}{\sqrt {1-\rho ^{2}}}}}\exp \left[-{\frac {1}{2(1-\rho ^{2})}} \left( {\frac {y-\mu _{Y}}{\sigma _{Y}}}-\rho{\frac {x-\mu _{X}}{\sigma _{X}}}\right)^2 -{\frac {(x-\mu _{X})^{2}}{2\sigma _{X}^{2}}}\right] f(x,y)=2πσ