二维正态分布及其最大值、最小值、和项、差项的期望

待解决的概率论题目

Alt
来自《概率论与数理统计》荣腾中,第二版上的第四章A组习题11,我觉得这一题有一定难度。

概率论基本知识

  1. ∫ − ∞ + ∞ e − x 2 d x = π (1) \int _{-\infty}^{+\infty}{e^{-x^2}dx}=\sqrt{\pi} \tag{1} +ex2dx=π (1)
  2. f ( x , y ) = 1 2 π σ X σ Y 1 − ρ 2 exp ⁡ ( − 1 2 ( 1 − ρ 2 ) [ ( x − μ X ) 2 σ X 2 − 2 ρ ( x − μ X ) ( y − μ Y ) σ X σ Y + ( y − μ Y ) 2 σ Y 2 ] ) f(x,y) = {\frac {1}{2\pi \sigma _{X}\sigma _{Y}{\sqrt {1-\rho ^{2}}}}}\exp \left(-{\frac {1}{2(1-\rho ^{2})}}\left[{\frac {(x-\mu _{X})^{2}}{\sigma _{X}^{2}}}-{\frac {2\rho (x-\mu _{X})(y-\mu _{Y})}{\sigma _{X}\sigma _{Y}}+{\frac {(y-\mu _{Y})^{2}}{\sigma _{Y}^{2}}}}\right]\right) f(x,y)=2πσXσY1ρ2 1exp(2(1ρ2)1[σX2(xμX)2σXσY2ρ(xμX)(yμY)+σY2(yμY)2])
  3. E ( a X + b ) = a E ( X ) + b (2) E(aX+b) = aE(X)+b \tag{2} E(aX+b)=aE(X)+b(2)
  4. E ( x ) = ∫ − ∞ + ∞ x f ( x ) d x (3) E(x) = \int _{-\infty}^{+\infty}xf(x)dx \tag{3} E(x)=+xf(x)dx(3)
    (1)式可以由夹挤定理和二重积分证明,也可以化为伽马函数 Γ ( x ) \Gamma{(x)} Γ(x)1进行计算,为了便于计算,这里给出一个广义的版本
    ∫ − ∞ + ∞ e − a ( x + b ) 2   d x = π a (4) \int _{-\infty }^{+\infty }e^{-a(x+b)^{2}}\,dx={\sqrt {\frac {\pi }{a}}} \tag{4} +ea(x+b)2dx=aπ (4)
    第2条是二元正态分布的概率密度函数,不得不说,课本上给出的这个形式让人有一种无法完成积分的感觉,这里稍微改变一下形式
    f ( x , y ) = 1 2 π σ X σ Y 1 − ρ 2 exp ⁡ [ − 1 2 ( 1 − ρ 2 ) ( y − μ Y σ Y − ρ x − μ X σ X ) 2 − ( x − μ X ) 2 2 σ X 2 ] f(x,y) = {\frac {1}{2\pi \sigma _{X}\sigma _{Y}{\sqrt {1-\rho ^{2}}}}}\exp \left[-{\frac {1}{2(1-\rho ^{2})}} \left( {\frac {y-\mu _{Y}}{\sigma _{Y}}}-\rho{\frac {x-\mu _{X}}{\sigma _{X}}}\right)^2 -{\frac {(x-\mu _{X})^{2}}{2\sigma _{X}^{2}}}\right] f(x,y)=2πσ
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值