机器学习svm之博客合集

本文介绍了支持向量机SVM的工作原理,包括其二值分类的实现方式,以及评估指标如准确率、精确率和召回率的概念。同时,详细阐述了sklearn库中svm.svc参数的使用,并探讨了SVM在实际问题中的应用。
摘要由CSDN通过智能技术生成

SVC 二值分类器 工作原理_lipeitong333的博客-CSDN博客_二值分类器

支持向量机SVC_月亮与六便士丶的博客-CSDN博客_支持向量机svc

准确率(Accuracy)。顾名思义,就是所有的预测正确(正类负类)的占总的比重。

精确率(Precision),查准率。即正确预测为正的占全部预测为正的比例。个人理解:真正正确的占所有预测为正的比例。

召回率(Recall),针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了

SVM基本概要与sklearn.svm.svc 参数说明_二当家的掌柜的博客-CSDN博客_svm.svc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

maryhaocool2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值