
算法
代码喵酱
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
算法的时间复杂度详解
算法的时间复杂度是衡量一个算法效率的基本方法。在阅读其他算法教程书的时候,对于算法的时间复杂度的讲解不免有些生涩,难以理解。进而无法在实际应用中很好的对算法进行衡量。 《大话数据结构》一书在一开始也针对算法的时间复杂度进行了说明。这里的讲解就非常明确,言简意赅,很容易理解。下面通过《大话数据结构》阅读笔记的方式,通过原因该书的一些简单的例子和说明来解释一下算法的时间复杂度和它的计算方转载 2013-10-14 10:26:34 · 2685 阅读 · 2 评论 -
冒泡排序(升序和降序)的python代码实现
冒泡排序交换排序的基本思想是:两两比较待排序记录的关键字,发现两个记录的次序相反时即进行交换,直到没有反序的记录为止。应用交换排序基本思想的主要排序方法有:冒泡排序和快速排序。冒泡排序的编程思想有两种,浮上去和沉下来。沉下来:从前往后进行两两比较,将气泡较重的置到下方。def bubblesortDown(date): length = len(date)原创 2013-10-13 12:09:24 · 7024 阅读 · 0 评论 -
汉诺塔问题的python实现
汉诺塔问题是一个经典的递归问题。问题描述: 有一个梵塔,塔内有三个座A、B、C,A座上有诺干个盘子,盘子大小不等,大的在下,小的在上(如图)。把这些个盘子从A座移到C座,中间可以借用B座但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。问题简化:把A柱子上的n个盘子移动到C柱子上,其中可以借助B柱。'''hanoi汉诺塔问题原创 2013-10-14 16:22:20 · 4144 阅读 · 0 评论 -
漫谈:机器学习中距离和相似性度量方法
在机器学习和数据挖掘中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如 K 最近邻(KNN)和 K 均值(K-Means)等等。根据数据特性的不同,可以采用不同的度量方法。一般而言,定义一个距离函数 d(x,y), 需要满足下面几个准则:1) d(x,x) = 0 // 到自己的转载 2014-04-21 10:59:34 · 1023 阅读 · 0 评论 -
kaiming he 暗通道去雾和导向滤波
何凯明博士目前已经加入Facebook AI Reserach ,他的blog地址:http://kaiminghe.com/暗通道论文下载地址:http://kaiminghe.com/publications/cvpr09.pdf导向滤波论文下载地址:http://kaiminghe.com/publications/eccv10guidedfilter.pdf目前导向滤波已经加入原创 2017-03-20 10:48:21 · 8452 阅读 · 0 评论