原题网址:
https://leetcode.com/problems/maximum-subarray/#/description
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4]
,
the contiguous subarray [4,-1,2,1]
has the largest sum = 6
.
题解:
在一个数组中找到连续和最大的子数组。
记第一个数为nums[0],第 i 个数为nums[i]。从nums[0]依次向后扫描,并记录nums[0]—nums[i]的所有和,由于数组中有负数,存在总和减小的情况,因此我们同时要记下最大和。若nums[0]—nums[i]的和为负数,就舍弃这i个数的和。认为i+1个数为第一个数,从新重复上述计算,直到扫描到数组的最后一个数,返回记录的最大值。
下面举个例子来说明这样做的原因:
最后返回最大加和4。
思路清晰,代码很简单,附上代码:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int sum, sum_max, max=nums[0];
sum = sum_max = 0;
for(int i=0;i<nums.size();i++)
{
if(nums[i] > max) max =nums[i];
sum = sum + nums[i];
if(sum <0) sum=0;
if(sum > sum_max) sum_max = sum;
}
if (max<0) return max;
return sum_max;
}
};
转载请附上本文链接:
http://blog.csdn.net/marywbrown/article/details/69086359