# tensorflow复习日记（八）保存模型

ckpt中也保存了图的结构，所以正确用法应该是训练模型中把要使用的变量都起个名字。

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#mnist已经作为官方的例子，做好了数据下载，分割，转浮点等一系列工作，源码在tensorflow源码中都可以找到

# 配置每个 GPU 上占用的内存的比例
# 没有GPU直接sess = tf.Session()
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

#每个批次的大小
batch_size = 20
#定义训练轮数据
train_epoch = 1
#定义每n轮输出一次
test_epoch_n = 1

#计算一共有多少批次
n_batch = mnist.train.num_examples // batch_size
print("batch_size="+str(batch_size)+"n_batch="+str(n_batch))

#占位符，定义了输入，输出
x = tf.placeholder(tf.float32,[None, 784],name='InputFeature')
y_ = tf.placeholder(tf.float32,[None, 10],name='InputLabel')
#权重和偏置，使用0初始化
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

#这里定义的网络结构
y = tf.nn.softmax(tf.matmul(x,W) + b,name='NetOutput')
#损失函数是交叉熵
#cross_entropy = -tf.reduce_sum(y_*tf.log(y))
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=y))
#训练方法：
#初始化sess中所有变量
init = tf.global_variables_initializer()
sess.run(init)

MaxACC = 0#最好的ACC
saver = tf.train.Saver()

#训练n个epoch
for epoch in range(train_epoch):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict = {x: batch_xs, y_: batch_ys})
if(0==(epoch%test_epoch_n)):#每若干次预测test一次
#计算test集的准确率
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
now_acc=sess.run(accuracy, feed_dict={x:mnist.test.images, y_: mnist.test.labels})
print('epoch=',epoch,'ACC=',now_acc)
if(now_acc>MaxACC):
MaxACC = now_acc
#tf.train.write_graph(sess.graph_def,'Model2','ModelSoftmax.pbtxt')
saver.save(sess,'Model2/ModelSoftmax.ckpt')
print('Save model! Now ACC=',MaxACC)

#计算最终test集的准确率
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Train OK! epoch=',epoch,'ACC=',sess.run(accuracy, feed_dict={x:mnist.test.images, y_: mnist.test.labels}))

#关闭sess
sess.close()

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#mnist已经作为官方的例子，做好了数据下载，分割，转浮点等一系列工作，源码在tensorflow源码中都可以找到

# 配置每个 GPU 上占用的内存的比例
# 没有GPU直接sess = tf.Session()
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

saver = tf.train.import_meta_graph('Model2/ModelSoftmax.ckpt.meta')

x_placeholder = tf.get_default_graph().get_tensor_by_name("InputFeature:0")
y_placeholder = tf.get_default_graph().get_tensor_by_name("InputLabel:0")
y=tf.get_default_graph().get_tensor_by_name("NetOutput:0")

correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_placeholder,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
saver.restore(sess,'Model2/ModelSoftmax.ckpt') # 注意此处路径前添加"./"
print('ACC=',sess.run(accuracy, feed_dict={x_placeholder:mnist.test.images,y_placeholder: mnist.test.labels}))

pb方式还没弄明白怎么打包保存的。

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120