手动读取pnet模型参数

说白了pnet模型参数就用numpy做了个保存,直接读取就好了。这样参数保存方式可以跨框架,也就是说caffe训练的模型可以直接拿到tensorflow上使用。当然结构得重写,所以只适合比较小的模型,例如:pnet

import numpy as np
#latin1是什么意思,我也不知道
test = np.load('det1.npy',encoding='latin1')
#test是个np数组,里面的内容是个多层字典
a = test.all()

for t in a:
    print(t)#打印第一层
    b = a[t]
    for i in b:#打印第二层
        print('****',i)

最终输出的结构:
conv3
** weights
** biases
conv1
** weights
** biases
conv4-1
** weights
** biases
conv4-2
** weights
** biases
PReLU1
** alpha
conv2
** weights
** biases
PReLU2
** alpha
PReLU3
** alpha

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值