WIN10中使用vscode,在jupyter中运行c++程序

本篇博客记录了在Windows10环境下,通过安装Linux子系统和WSL,使用VSCode配合Jupyter Notebook运行C++的详细步骤。过程中遇到了xeus-cling与Jupyter版本不兼容的问题,通过调整conda环境和安装指定版本的软件包解决了问题。最终实现了在VSCode中选择C++内核并成功运行代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在编写C++的过程中,想使用vscode,在jupyter中运行C++,经过搜索,可以通过xeus-cling实现,但xeus-cling只支持linux和mac,不支持windows系统,因此需要先安装WSL来实现功能,在此记录一下实现过程。

参考的主要资源包括如下几篇文章:

启用WSL功能

参考即可,没有需要更正的。

  • 按下 “Windows + X”,选择 Windows PowerShell(管理员)。
  • 然后在 PowerShell 中输入以下命令:
    Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux
  • 出现提示后重启计算机。

安装Linux发行版本

由于我用的Win10 LSTC版本,手动安装Microsoft Stor,参考win10如何安装Microsoft store? - 知乎 (zhihu.com)

先去网盘下载(提取码1234),下载后将文件解压到桌面上,右键以管理员身份运行文件夹中的 Add-Store.cmd,左下角出现 Press any Key to Exit. 时,关闭窗口,重启电脑即可。

打开 Microsoft Store 搜索Ubuntu,单击 Ubuntu 后选择 获取 就会自动下载安装 Ubuntu 了。

下载完成后运行会进入命令行界面,第一次使用要设置一下用户名和密码,然后运行以下两行命令更新一下软件包。

sudo apt update
sudo apt upgrade

安装Miniconda

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

在Ubuntu终端内输入以上两行命令,无脑yes和enter就行。然后关闭终端重启,看到用户名前出现(base)提示说明安装成功。

安装Jupyter和xeus-cling

这里就不能完全参考在 Win10 中使用 Jupyter notebook 运行 C++ 详细教程_蓝三金的博客-CSDN博客_c++ notebook了,需要结合如何使用jupyter运行c++ - 百度文库 (baidu.com)来用,因为第一篇文章中安装的jupyter和xeus-cling会出现版本不兼容的情况,虽然照着来能安装成功,但是在vscode内运行的时候,会出现内核一直连接不上的情况。

先进入xeus-cling的在线试用网站,xcpp - Jupyter Notebook (gesis.org),然后新建一个cell输入 !conda list,这样我们就能获取到xeus-cling自己搭建环境用到的软件包的版本情况,主要关注一下几个包的版本:

  • jupyter_core 4.7.1 py37h89c1867_0 conda-forge
  • jupyter_client 6.1.12 pyhd8ed1ab_0 conda-forge
  • python 3.7.10 hffdb5ce_100_cpython conda-forge
  • xeus-cling 0.12.0 h560cc44_2 conda-forge

获取到这些信息后,我们就可以来配置conda环境了,我使用的命令如下,直接按顺序运行就行,里面先安装了下mamba来提高安装速度。

conda create -n cling
conda activate cling
conda install -c conda-forge mamba
mamba install python==3.7.10
mamba install jupyter_core==4.7.1
mamba install jupyter_client=6.1.12
mamba install jupyter notebook
mamba install xeus-cling==0.12.0 -c conda-forge

这样我们的linux环境就搭建好了,然后就是vscode的设置。

Vscode和jupyter设置

先在linux终端内输入jupyter notebook,这样我们就开启了一个jupyter服务器,这时候会给出提示文本告诉我们地址:

 

把这个地址copy下来备用。

切到Vscode界面,新建一个cpp.ipynb文件,然后点击右下角的jupyter服务器选择按钮

 

在弹出的窗口里选择现有的,把刚才复制的地址paste进去

 

这时候我们就把jupyter切换成linux里运行的了,然后点击右上角的选择内核,可以看到已经有C++11,C++14,C++17可以选择了。

 

先运行个hello world试一下,发现报错了,原因是在jupyter里不需要写int main了,直接去掉。

 

改成这样就可以运行啦。

但还有点小问题,就是这里的代码风格还是python 的,所以会标出各种错误格式提示,需要修改一下。点击cell右下角的python小字

弹出的窗口里选择cpp就可以了

 

现在再看,已经可以正常的按照C++的代码风格来显示颜色和字体加粗等。

 

到这里,我们在vscode中,使用jupyter运行c++就成功了~

<think>好的,我现在需要帮助用户在VSCode中配置和运行YOLOv5项目。首先,我应该回忆一下用户提供的引用内容,看看有没有相关的步骤或者常见问题解决方案。 用户提到引用[1]中提到了使用vcpkg安装OpenCV,这可能与YOLOv5的依赖有关。不过YOLOv5通常是通过Python的pip安装依赖,可能不需要手动安装OpenCV,因为requirements.txt应该会包含。不过需要确认是否需要额外的库,比如在某些情况下可能需要用vcpkg来管理C++的依赖,但用户可能只是用Python环境,所以可能不需要这一步。但可能需要参考用户的引用,所以或许需要提到这个作为可选步骤,比如当出现OpenCV相关问题时,可以考虑通过vcpkg安装。 引用[2]中提到在Windows运行YOLOv5时可能需要处理缺少OpenSSL的问题,这可能在安装某些依赖时出现,需要注意。用户如果遇到类似错误,可能需要安装OpenSSL。 引用[3]是关于YOLOv8的训练,但里面提到在VSCode的终端中安装requirements.txt,使用清华的镜像源。这可能同样适用于YOLOv5的依赖安装,所以需要建议用户使用pip安装依赖,并指定镜像源加速。 引用[4]提到了处理数据集路径的问题,复制图片到正确位置,避免文件缺失的错误。所以在配置YOLOv5时,用户需要确保数据集路径正确,并且检查数据集文件是否存在。 接下来,我应该按照步骤来指导用户: 1. 环境准备:安装Python、Git、VSCode。Python版本需要符合YOLOv5的要求,比如3.8或更高。可能需要指定安装PyTorch,因为YOLOv5依赖它。 2. 克隆YOLOv5仓库:使用git clone命令获取官方代码。 3. 安装依赖:进入项目目录,运行pip install -r requirements.txt,并建议使用清华源加速。这里需要参考引用[3]中的方法,添加-i参数。 4. 配置VSCode:设置Python解释器,可能需要在VSCode中选择正确的虚拟环境。同时,可能需要配置调试环境或设置工作区。 5. 验证安装:运行detect.py脚本,测试是否能够正常进行推理,使用示例图片或用户自己的数据。 6. 常见问题处理:比如OpenSSL缺失(引用[2])、数据集路径错误(引用[4])或OpenCV安装问题(引用[1])。 需要注意,用户可能遇到的错误包括: - 缺少依赖项,需要正确安装requirements.txt中的库。 - 数据集路径不正确,导致文件找不到,需要检查txt文件和实际图片路径是否匹配,如引用[4]中的情况。 - OpenCV无法导入,可能需要通过vcpkg安装(引用[1]),但一般情况下pip安装的opencv-python应该足够。 - OpenSSL缺失,需要用户去指定网站下载安装(引用[2])。 最后,生成相关问题,比如如何准备数据集、如何训练模型、如何优化性能等,基于用户可能后续的疑问。</think>### 在 VSCode 中配置和运行 YOLOv5 的步骤 #### 1. **环境准备** - **安装 Python**:确保 Python 版本 ≥3.8(推荐 3.8-3.10),可通过 `python --version` 检查。 - **安装 Git**:用于克隆 YOLOv5 仓库。 - **配置 VSCode**:安装 Python 插件和 Jupyter 插件(可选,用于可视化调试)[^3]。 #### 2. **克隆 YOLOv5 仓库** 在 VSCode 终端执行: ```bash git clone https://github.com/ultralytics/yolov5 cd yolov5 ``` #### 3. **安装依赖** 使用清华镜像加速安装: ```bash pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 若遇到 `torch` 安装问题,可手动安装 CPU/GPU 版本: - CPU 版本:`pip install torch==1.10.0+cpu torchvision==0.11.1+cpu -f https://download.pytorch.org/whl/torch_stable.html` - GPU 版本:参考 [PyTorch 官网指令](https://pytorch.org/)。 #### 4. **验证基本功能** 运行示例推理: ```bash python detect.py --source data/images/bus.jpg ``` 结果保存在 `runs/detect/exp` 目录中。若成功,说明环境配置正确。 #### 5. **处理常见问题** - **OpenSSL 缺失**:从 [Shining Light Productions](https://slproweb.com/products/Win32OpenSSL.html) 下载并安装 OpenSSL[^2]。 - **数据集路径错误**:检查数据集的 `train.txt`/`val.txt` 中图片路径是否与实际文件匹配,必要时用脚本修正(参考引用[4]的代码)[^4]。 - **OpenCV 问题**:若 `opencv-python` 安装失败,可通过 `vcpkg` 安装 OpenCV(需提前配置 `vcpkg`)[^1]。 #### 6. **自定义开发** - **训练模型**:准备数据集后,修改 `data/coco.yaml` 中的路径和类别,运行: ```bash python train.py --img 640 --batch 16 --epochs 100 --data data/coco.yaml --weights yolov5s.pt ``` - **调试代码**:在 VSCode 中设置断点,使用调试功能逐行分析。 --- ### 相关问题 1. **如何准备自定义数据集用于 YOLOv5 训练?** 2. **YOLOv5 训练时出现显存不足如何解决?** 3. **如何将 YOLOv5 模型导出为 ONNX 或 TensorRT 格式?** 4. **在 VSCode 中调试 YOLOv5 代码有哪些实用技巧?** --- 以上步骤综合了 YOLOv5 官方文档和引用中提到的配置经验[^1][^2][^3][^4],确保覆盖常见问题与优化点。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萌萌哒赫萝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值