机器学习算法 公益学习 打卡第四天

一、马尔可夫过程

1.定义

假设一个随机过程中, t n t_n tn 时刻的状态 x n x_n xn的条件发布,只与其前一状态 x n − 1 x_{n-1} xn1 相关,即:

P ( x n ∣ x 1 , x 2 , . . . , x n − 1 ) = P ( x n ∣ x n − 1 ) P(x_n|x_1,x_2,...,x_{n-1}) = P(x_n|x_{n-1}) P(xnx1,x2,...,xn1)=P(xnxn1)
则将其称为 马尔可夫过程。

二、隐马尔科夫算法

1.定义

隐马尔科夫算法是对含有未知参数(隐状态)的马尔可夫链进行建模的生成模型.
在隐马尔科夫模型中,包含隐状态 和 观察状态,隐状态 x i x_i xi 对于观察者而言是不可见的,而观察状态 y i y_i yi 对于观察者而言是可见的。隐状态间存在转移概率,隐状态 x i x_i xi到对应的观察状态 y i y_i yi 间存在输出概率。

2.假设

假设隐状态 x i x_i xi 的状态满足马尔可夫过程,i时刻的状态 x i x_i xi 的条件分布,仅与其前一个状态 x i − 1 x_{i-1} xi1相关,即:
P ( x i ∣ x 1 , x 2 , . . . , x i − 1 ) = P ( x i ∣ x i − 1 ) P(x_i|x_1,x_2,...,x_{i-1}) = P(x_i|x_{i-1}) P(xix1,x2,...,xi1)=P(xixi1)
假设观测序列中各个状态仅取决于它所对应的隐状态,即:
P ( y i ∣ x 1 , x 2 , . . . , x i − 1 , y 1 , y 2 , . . . , y i − 1 , y i + 1 , . . . ) = P ( y i ∣ x i ) P(y_i|x_1,x_2,...,x_{i-1},y_1,y_2,...,y_{i-1},y_{i+1},...) = P(y_i|x_{i}) P(yix1,x2,...,xi1,y1,y2,...,yi1,yi+1,...)=P(yixi)

3.存在问题

在序列标注问题中,隐状态(标注)不仅和单个观测状态相关,还和观察序列的长度、上下文等信息相关。例如词性标注问题中,一个词被标注为动词还是名词,不仅与它本身以及它前一个词的标注有关,还依赖于上下文中的其他词。

三、条件随机场 (以线性链条件随机场为例)

1.定义

给定 X = ( x 1 , x 2 , . . . , x n ) X=(x_1,x_2,...,x_n) X=(x1,x2,...,xn) Y = ( y 1 , y 2 , . . . , y n ) Y=(y_1,y_2,...,y_n) Y=(y1,y2,...,yn) 均为线性链表示的随机变量序列,若在给随机变量序列 X 的条件下,随机变量序列 Y 的条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX) 构成条件随机场,即满足马尔可夫性:

P ( y i ∣ x 1 , x 2 , . . . , x i − 1 , y 1 , y 2 , . . . , y i − 1 , y i + 1 ) = P ( y i ∣ x , y i − 1 , y i + 1 ) P(y_i|x_1,x_2,...,x_{i-1},y_1,y_2,...,y_{i-1},y_{i+1}) = P(y_i|x,y_{i-1},y_{i+1}) P(yix1,x2,...,xi1,y1,y2,...,yi1,yi+1)=P(yix,yi1,yi+1)
则称为 P(Y|X) 为线性链条件随机场。

通过去除了隐马尔科夫算法中的观测状态相互独立假设,使算法在计算当前隐状态 x i x_i xi时,会考虑整个观测序列,从而获得更高的表达能力,并进行全局归一化解决标注偏置问题。
参数化形式
在这里插入图片描述
其中:

Z ( x ) Z(x) Z(x) 为归一化因子,是在全局范围进行归一化,枚举了整个隐状态序列 x 1 … n x_{1…n} x1n的全部可能,从而解决了局部归一化带来的标注偏置问题。

Z ( x ) = ∑ y exp ⁡ ( ∑ i , k λ x t k ( y i − 1 , y i , x , i ) + ∑ i , l μ l s l ( y i , x , i ) ) Z(x)=\sum_{y} \exp \left(\sum_{i, k} \lambda_{x} t_{k}\left(y_{i-1}, y_{i}, x, i\right)+\sum_{i, l} \mu_{l} s_{l}\left(y_{i}, x, i\right)\right) Z(x)=yexpi,kλxtk(yi1,yi,x,i)+i,lμlsl(yi,x,i)
t k t_k tk 为定义在边上的特征函数,转移特征,依赖于前一个和当前位置

s 1 s_1 s1 为定义在节点上的特征函数,状态特征,依赖于当前位置。

简化形式
因为条件随机场中同一特征在各个位置都有定义,所以可以对同一个特征在各个位置求和,将局部特征函数转化为一个全局特征函数,这样就可以将条件随机场写成权值向量和特征向量的内积形式,即条件随机场的简化形式。

step 1
将转移特征和状态特征及其权值用统一的符号表示,设有k1个转移特征, k 2 k_2 k2个状态特征, K = k 1 + k 2 K=k_1+k_2 K=k1+k2,记

step 2
对转移与状态特征在各个位置i求和,记作

step 3
λ x \lambda_{x} λx μ l \mu_{l} μl 用统一的权重表示,记作

step 4
转化后的条件随机场可表示为:

step 5
w w w 表示权重向量:

w = ( w 1 , w 2 , . . . , w K ) T w = (w_1,w_2,...,w_K)^T w=(w1,w2,...,wK)T
F ( y , x ) F(y,x) F(y,x) 表示特征向量,即
则,条件随机场写成内积形式为:
矩阵形式
推导 begin
推导 end

2.基本问题

条件随机场包含概率计算问题、学习问题和预测问题三个问题。

1.概率计算问题:已知模型的所有参数,计算观测序列 Y Y Y 出现的概率,常用方法:前向和后向算法;

2.学习问题:已知观测序列 Y Y Y,求解使得该观测序列概率最大的模型参数,包括隐状态序列、隐状态间的转移概率分布和从隐状态到观测状态的概率分布,常用方法:Baum-Wehch 算法;

3.预测问题:一直模型所有参数和观测序列 Y Y Y ,计算最可能的隐状态序列 X X X,常用算法:维特比算法。

概率计算问题
给定条件随机场 P ( Y ∣ X ) P(Y|X) P(YX),输入序列 x x x 和 输出序列 y y y;

计算条件概率

P ( Y i = y i ∣ x ) , P ( Y i − 1 = y i − 1 , Y i = y i ∣ x ) P(Y_i=y_i|x), P(Y_{i-1} = y_{i-1},Y_i = y_i|x) P(Yi=yix),P(Yi1=yi1,Yi=yix)
计算相应的数学期望问题;
前向-后向算法
step 1 前向计算
对观测序列 x x x 的每个位置 i = 1 , 2 , . . . , n + 1 i=1,2,...,n+1 i=1,2,...,n+1 ,定义一个 m m m 阶矩阵( m m m 为标记 Y i Y_i Yi取值的个数)
对每个指标 i = 0 , 1 , . . . , n + 1 i=0,1,...,n+1 i=0,1,...,n+1,定义前向向量 α i ( x ) \alpha_{i}(x) αi(x),则递推公式:
其中,
step 2 后向计算
对每个指标 i = 0 , 1 , . . . , n + 1 i=0,1,...,n+1 i=0,1,...,n+1,定义前向向量 β i ( x ) \beta_{i}(x) βi(x),则递推公式:

step 3

step 4 概率计算
所以,标注序列在位置 i i i 是标注 y i y_i yi 的条件概率为:
其中,

step 5 期望值计算
通过利用前向-后向向量,计算特征函数关于联合概率分布 P ( X , Y ) P(X,Y) P(X,Y) 和 条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX) 的数学期望,即特征函数 f k f_k fk 关于条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX) 的数学期望:

学习问题

这里主要介绍一下 BFGS 算法的思路。
输入:特征函数 f 1 , f 2 , . . . , f n f_1,f_2,...,f_n f1,f2,...,fn:经验分布 P ~ ( X , Y ) \widetilde{P}(X,Y) P (X,Y)
输出:最优参数值 w ^ \widehat{w} w ,最优模型 P w ^ ( y ∣ x ) P_{\widehat{w}}(y|x) Pw (yx)

1.选定初始点 w^{(0)}, 取 B 0 B_0 B0 为正定对称矩阵,k = 0;
2.计算 g k = g ( w ( k ) ) g_k = g(w^(k)) gk=g(w(k)),若 g k = 0 g_k = 0 gk=0 ,则停止计算,否则转 (3) ;
3.利用 B k p k = − g k B_k p_k = -g_k Bkpk=gk 计算 p k p_k pk
4.一维搜索:求 λ k \lambda_k λk使得
5.设 w ( k + 1 ) = w ( k ) + λ k ∗ p k w^{(k+1)} = w^{(k)} + \lambda_k * p_k w(k+1)=w(k)+λkpk
6.计算 g k + 1 g_{k+1} gk+1 = g(w^{(k+1)}),
g k = 0 g_k = 0 gk=0, 则停止计算;否则,利用下面公式计算 B k + 1 B_{k+1} Bk+1:
7.令 k = k + 1 k=k+1 k=k+1,转步骤(3)

预测问题
对于预测问题,常用的方法是维特比算法,其思路如下:

输入:模型特征向量 F ( y , x ) F(y,x) F(y,x) 和权重向量 w w w,输入序列(观测序列) x = x 1 , x 2 , . . . , x n x={x_1,x_2,...,x_n} x=x1,x2,...,xn

输出:条件概率最大的输出序列(标记序列) y ∗ = ( y 1 ∗ , y 2 ∗ , . . . , y n ∗ ) y^{*}= (y_1^*,y_2^*,...,y_n^*) y=(y1,y2,...,yn),也就是最优路径;
1.初始化
2.递推,对 i = 2 , 3 , . . . , n i=2,3,...,n i=2,3,...,n
3.终止
4.返回路径
求得最优路径 y ∗ = ( y 1 ∗ , y 2 ∗ , . . . , y n ∗ ) y^{*}= (y_1^*,y_2^*,...,y_n^*) y=(y1,y2,...,yn)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值