RobHess的SIFT源码分析:综述

最初的目的是想做全景图像拼接,一开始找了OpenCV中自带的全景拼接的样例,用的是Stitcher类,可以很方便的实现全景拼接,而且效果很好,但是不利于做深入研究。

Stitcher类使用方法请查OpenCV APIhttp://docs.opencv.org/2.4.4/modules/refman.html,搜索Stitcher

使用OpenCV中自带的Stitcher类的全景图像拼接样例下载http://download.csdn.net/detail/masikkk/5661075

图像拼接及源码下载参见此篇博文基于SIFT特征的全景图像拼接

后来想用OpenCV中自带的SIFT特征检测器进行特征检测和拼接,但还是有隔靴搔痒的感觉,接触不到SIFT算法的本质,

看到网上大多数都是使用RobHess的SIFT源码,自己也下载了一份进行了分析。

RobHess的SIFT源码下载地址http://robwhess.github.io/opensift/

一些SIFT算法和全景拼接测试用图下载,包含牛津大学网站上提供的测试图:http://download.csdn.net/detail/masikkk/5702749


一开始也是感觉比较乱,不知道怎么用,接触了一段时间后比较清晰了,下面说一下RobHess的SIFT源码中的几个文件都是做什么用的,方便刚接触的同学学习。

(1) imgfeatures.h和imgfeatures.c文件

imgfeatures.h中有SIFT特征点结构struct feature的定义,这个结构很重要,后面都要用到,除此之外还有一些特征点的导入导出以及特征点绘制函数的声明。

对应的imgfeatures.c文件中是特征点的导入导出以及特征点绘制函数的实现。

 imgfeatures.h和imgfeatures.c的源码分析在这里RobHess的SIFT源码分析:imgfeatures.h和imgfeatures.c文件

里面有特征点结构struct feature的详细说明。


(2) utils.h和utils.c文件

这两个文件中是一些图像基本操作的函数,包括:
1、获取某位置的像素点
2、设置某位置的像素点(8位,32位和64位),
3、计算两点之间的距离的平方
4、在图片某一点画一个“X”
5、将两张图片合成为一个(在特征匹配中用到),高是二者之和,宽是二者的较大者。


(3) sift.h和sift.c文件

这两个是最重要的,里面的内容说白了很简单,就是两个特征点检测函数sift_features()和 _sift_features(),

sift_features()是用默认参数进行特征点检测, _sift_features()允许用户输入各种检测参数,其实sift_features()中也是再次调用_sift_features()函数。

所以,你只需提供原图像和存储特征点的数组以及其他一些检测参数,然后调用sift_features()或 _sift_features()就可完成SIFT特征点检测。

但是这两个文件分析起来也是最复杂的。

sift.h中有默认的各种特征检测中用到的参数的宏定义,sift.c中是检测函数的实现,是最核心的一个文件,里面的一些未暴露接口的本地函数就有31个之多。

仔细分析完后发现大神就是大神,程序写的条理非常清楚,尤其是函数_sift_features()的函数体,从头到尾的几部分正好对应SIFT算法的几个步骤,

把一些细节全部放在子函数中,非常清楚明了。

关于SIFT算法的原理,可以参加下面几篇文章,写的都不错:

小魏的SIFT原理与源码分析系列文章【OpenCV】SIFT原理与源码分析

zddmail的SIFT算法详解,讲的不错,尤其一些细节讲的与众不同:SIFT算法详解

Rachel-Zhang的SIFT算法分析SIFT特征提取分析

July的经典算法研究系列中的SIFT算法分析经典算法研究系列:九、图像特征提取与匹配之SIFT算法

以及July的教你一步一步实现SIFT算法九之再续:教你一步一步用c语言实现sift算法、上

tornadomeet的SIFT算法分析特征点检测学习_1(sift算法)

以及这篇博客中的SIFT算法分析SIFT 特征提取算法总结

还有这篇结合RobHess源码的SIFT算法分析SIFT算法研究

还有我觉得讲的挺详细的一篇文章http://download.csdn.net/detail/masikkk/5661453

或者你也可以直接读David.Lowe发表的英文原版论文:

David.Lowe1999年发表在ICCV的SIFT论文http://download.csdn.net/detail/masikkk/5661441

David.Lowe2004年发表在IJCV的SIFT改进论文http://download.csdn.net/detail/masikkk/5661447

sift.h和sift.c的源码分析在这里:RobHess的SIFT源码分析:sift.h和sift.c文件


(4) minpq.h和minpq.c文件

这两个文件中实现了最小优先级队列(Minimizing Priority Queue),也就是小顶堆,在k-d树的建立和搜索过程中要用到。


(5) kdtree.h和kdtree.c文件

这两个文件中实现了k-d树的建立以及用BBF(Best Bin First)算法搜索匹配点的函数。

如果你需要对两个图片中的特征点进行匹配,就要用到这两个文件。

关于k-d树算法的讲解,可参考这篇文章k-d tree算法

以及这篇k-d tree算法的研究

还有这篇,里面讲解了k-d树,BBF和RANSACSIFT特征点匹配与消除错配:BBF,RANSAC

以及July的一篇:从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

kdtree.h和kdtree.c的源码分析在这里RobHess的SIFT源码分析:kdtree.h和kdtree.c文件


(6) xform.h和xform.c文件

这两个文件中实现了RANSAC算法(RANdom SAmple Consensus 随机抽样一致)。

RANSAC算法可用来筛选两个图像间的SIFT特征匹配并计算变换矩阵。

你可以单纯利用RANSAC算法筛选两个图像间的SIFT特征匹配,以得到更好的匹配结果,

见此文:利用RANSAC算法筛选SIFT特征匹配

或者想要进行全景拼接时,利用RANSAC算法计算两个图像间的变换矩阵。

关于RANSAC算法的讲解,可参考这篇文章随机抽样一致 RANSAC

以及这篇,里面有用RANSAC算法解决线性回归问题的例子我的数学之美(一)——RANSAC算法详解

以及这篇,里面讲解了k-d树,BBF和RANSACSIFT特征点匹配与消除错配:BBF,RANSAC

xform.h和xform.c的源码分析在这里:RobHess的SIFT源码分析:xform.h和xform.c文件


(7) 其他文件:dspfeat.c,match.c,siftfeat.c

这几个文件中是一些使用SIFT算法的小例子:

dspfeat.c文件可以从预先保存的特征点文件中读取特征点并显示在图片上。

match.c文件可以检测两个图像中的特征点并进行匹配。

siftfeat.c文件利用SIFT算法检测特征点,有一些控制台操作提示。


参考

RobHess的SIFT源码分析:综述


  • 51
    点赞
  • 200
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论
未使用包,python源码实现。 SIFT 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。 其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。 此算法有其专利,专利拥有者为英属哥伦比亚大学。 局部影像特征的描述与侦测可以帮助辨识物体,SIFT 特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、些微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用 SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。 SIFT算法的特点有: 1. SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性; 2. 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配; 3. 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量; 4. 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求; 5. 可扩展性,可以很方便的与其他形式的特征向量进行联合。 SIFT算法可以解决的问题: 目标的自身状态、场景所处的环境和成像器材的成像特性等因素影响图像配准/目标识别跟踪的性能。而SIFT算法在一定程度上可解决: 1. 目标的旋转、缩放、平移(RST) 2. 图像仿射/投影变换(视点viewpoint) 3. 光照影响(illumination) 4. 目标遮挡(occlusion) 5. 杂物场景(clutter) 6. 噪声 SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向。SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。 Lowe将SIFT算法分解为如下四步: 1. 尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。 2. 关键点定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点的选择依据于它们的稳定程度。 3. 方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。 4. 关键点描述:在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化。 本文沿着Lowe的步骤,参考Rob Hess及Andrea Vedaldi源码,详解SIFT算法的实现过程。 未使用包,python源码实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

masikkk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值