用matlab实现感知机学习算法,训练分类器并解决井字游戏

问题描述:
附件中包含的数据是传统游戏过三关(tic-tac-toe)的900余种棋局, 目的是要通过统计学习的方法让机器自动判别出胜负。数据文件中, 玩家是'x',对手是'o',每行数据包含3*3九宫格的布局情况('x'代表玩家棋子的位置, 'o'代表对手棋子的位置, 'b'代表空格),  'positive'代表玩家赢, 'negative代表玩家负。整个问题可以看做是一个输入特征为9维的二分类问题。

样本数据digitdata2.txt文件中,×是1,o是-1,b是0,positive是1,negative是-1。
1-250个是第一类,251-500个是第二类,利用前500个样本训练分类器,剩下458个样本做测试

(1)权向量设为w,初始值随机生成,满足:
 
(2)代价函数为J(w):
其中,δ是符号系数,x为第一类时δ是-1,x为第二类时δ是1,以保证代价函数为正。Y是分错类的样本的集合。
 
(3)利用梯度下降进行迭代:
化简后是:
其中ρ是每次下降的步长

(4)不断更新权向量w值,同时计算代价函数J(w),直到代价函数值为0,迭代结束。
此时的权向量w即为所求。 利用w和测试样本x相乘,结果为正属第一类,结果为负属第二类。
由于随机初始化的权向量w不同,各次运行结果有所不同。
 
matlab代码如下:
function ganzhiji()
%利用感知机学习算法训练分类器解决tic tac toe游戏问题
%样本数据digitdata2.txt文件中,×是1,o是-1,b是0,positive是1,negative是-1
%样本数据顺序进行了调整,1-250个是第一类,251-500个是第二类
%利用前500个样本训练分类器,剩下458个样本做测试
%digitdata中,×是1,o是2,b是3,positive是1,negative是-1

A = importdata('digitdata2.txt');%导入样本数据为一个958行10列的矩阵
%A = importdata('digitdata.txt');%导入样本数据为一个958行10列的矩阵
%A = importdata('littledata.txt');%少量数据,调试用

% B保存剩下用来测试的样本
for i = 501:958
    B(i-500,:) = A(i,:);
end

%将矩阵A的第10列置为1,得到每个样本的增广向量
for i = 1:958
	A(i,10) = 1;
end
%disp(A);

%初始化一些参数
w = rand(10,1);%初始权向量,10维列向量
%disp(w);
p = 1;%梯度下降的步长
ox1 = -1;%符号系数,保证代价函数大于0
ox2 = 1;
s = 1;%迭代标志位
n = 0;%迭代次数
w1 = [0 0 0 0 0 0 0 0 0 0]';%10维列向量,临时权向量
%disp(w1);

%迭代过程
while s
    J = 0;%代价函数的初值
    j = [0 0 0 0 0 0 0 0 0 0]';%用于每次迭代过程中临时累加下降量
    %for i = 1:5
    for i = 1:250  %第一类样本
        if( A(i,:)*w >0 )%x属于第一类且w'x>0,分类正确
            w1 = w;%权向量不变
        else %分类错误
            j = j + ox1 * A(i,:)';%累加下降量
            J = J + ox1 * A(i,:) * w;%更新代价函数
        end
    end
    %for i = 6:10
    for i = 251:500 %第二类样本
        if( A(i,:)*w <0 )%x属于第二类且w'x<0,分类正确
            w1 = w;%权向量不变
        else %分类错误
            j = j + ox2 * A(i,:)';%累加下降量
            J = J + ox2 * A(i,:) * w;%更新代价函数
        end
    end
    if J==0 %代价函数为0,即没有错分的样本了
        s = 0;%迭代终止
        disp('迭代终止');
    else 
        w1 = w - p*j;%得到新的权向量
        p = p + 0.1;%增加步长
        n = n + 1;
        %disp(n);
        %disp(J);
    end
    w = w1;%将临时权向量w1赋值给w
end %while s
disp('迭代次数:');disp(n);%输出迭代次数
disp('权向量:');w%输出权向量

%迭代结束后,w即为所得最优分类面
count = 0;%测试样本分类正确的个数
for i = 501:958
    if( A(i,:) * w >0 ) %第一类
        B(i-500,11) = 1;
        if( B(i-500,10) == 1 ) %分类正确
            count = count + 1;
        end
    else  %第二类
        B(i-500,11) = -1;
        if( B(i-500,10) == -1 ) %分类正确
            count = count + 1;
        end
    end
end
%disp(B);
disp('正确率:');
disp(count/458);%输出正确率

end %function ganzhiji()



 matlab源文件及样本数据下载: http://download.csdn.net/detail/masikkk/4747593

 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值