自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(286)
  • 收藏
  • 关注

原创 2020数学建模国赛赛题

关注微信公众号二进制人工智能回复2020gs获取

2021-01-07 16:52:30 41

原创 RGB图像转化为灰度图原理以及MATLAB实现

RGB图像转化为灰度图原理以及MATLAB实现1 原理在RGB彩色模型中表示的图像由三个分量图像组成,每种原色一幅分量图像。利用MATLAB对图像进行读取,可以知道存储RGB图像数据为2562563 uint8,其中256*256表示长和宽的像素个数,3表示红绿蓝三个分量图像,uint8表示每个分量图像(R、G、B)的像素点值的位宽为8比特,即可表示0-255的范围灰度数字图像是每个像素只有一个采样颜色的图像,通常显示为从最暗黑色到最亮的白色的灰度。因此我们可以将RGB模型转化为YUV模型(亮度-色

2021-01-03 12:43:11 397 1

原创 【神经网络分类器】(三)深度学习发展史——从深度信念网络到AlexNet

【神经网络分类器】(三)深度学习文章目录【神经网络分类器】(三)深度学习1 深度信念网络的结构深度学习的特点建议阅读读本文之前阅读以下文章:【神经网络分类器】(一)人工神经元网络的基本概念【神经网络分类器】(二)浅层神经网络【线性分类器】(四)万字长文解释拉格朗日乘子与支持向量机自 1986 年 Rumelhart 和 Hinton 等人提出 BP 网络以来,多层的人工神经网络终于有了有效的训练方法,也带来了人工神经网络研究的又一次繁荣。但是好景不长,由于 BP 网络本身具有的一些缺陷,包括收

2021-01-03 11:18:08 120

原创 【机器人学与计算机视觉基础】(一)位置与姿态描述 3 三维空间位姿描述

文章目录位置与姿态描述3 三维空间位姿描述3.1 三维空间姿态描述3.1.1 正交旋转矩阵3.1.2 三角度表示法3.1.3 双向量表示法3.1.4 绕任意向量旋转3.1.5 单位四元数3.2 平移与旋转组合3.2.1 四元数向量对3.2.2 4×4齐次变换矩阵位置与姿态描述3 三维空间位姿描述三维情况实际上是前一节讨论的二维情况的延伸。我们在二维坐标系上增加一个额外的坐标轴,通常用zzz表示,它同时与xxx轴和yyy轴正交。zzz轴的方向服从右手规则:与各坐标轴平行的单位向量记作x^、y^\ha

2021-01-02 10:55:13 62

原创 【数字图像处理】(六)图形分割

图形分割1 图像分割概述图像分割是指将图像中具有特殊意义的不同区域划分开来,这些区域是互不相交的,每个区域满足灰度、纹理、彩色等特征的某种相似性准则。图像分割是图像的分析过程中最重要的步骤之一,分割出的区域可以作为后续特征提取的目标对象。图像分割的方法和种类有很多,有些分割算法可以直接运用于大多数图像,而另一些则只适用于特殊类别的图像,要视具体情况来决定。一般采用的方法有边缘检测(Edge Detection)、边界跟踪(Edge Tracing)、区域生长(RegionGrowing)、区域分离和聚

2021-01-01 18:50:58 281

原创 【机器人学与计算机视觉基础】(一)位置与姿态描述 2 二维空间位姿描述

位置与姿态描述2 二维空间位姿描述讨论2维空间通常要用到笛卡儿坐标系,笛卡儿坐标系是以xxx轴和yyy轴为正交轴的坐标系,通常绘制成xxx轴水平、yyy轴竖直,两轴的交点称为原点。在笛卡尔坐标系中,平行于坐标轴的单位向量x^\hat{x}x^和y^\hat{y}y^​表示。一个点用其在xxx轴和yyy轴上的坐标(x,y)(x,y)(x,y)表示,或者写成向量:p=xx^+yy^\boldsymbol{p}=x \hat{\boldsymbol{x}}+y \hat{\boldsymbol{y}}p=x

2021-01-01 11:17:52 68

原创 【机器人学与计算机视觉基础】(一)位置与姿态描述 1 位姿的抽象符号表示

位置与姿态描述1 位姿的抽象符号表示提示:在本节中,我们会用到这几个抽象的符号:“ξ\xiξ”、“·”和“⊕\oplus⊕”。读者只需直到它们的作用就行,在后面会将其转化为MATLAB中实现的标准的数学对象和运算符。机器人和计算机视觉中的一个基本要求是能够表示物体在环境中的位置和方向。这些物体包括机器人、摄像机、工件、障碍物和路径。空间中的点可以被描述为一个坐标向量,也被称为一个约束向量。如下图所示,点PPP由一个相对于绝对坐标系的坐标向量表示。更多时候我们需要考虑组成物体的一组点。我们认为

2020-12-30 11:48:48 91

原创 【线性分类器】(四)万字长文解释拉格朗日乘子与支持向量机

【线性分类器】(一)线性判别【线性判别器】(二)“深度学习”的鼻祖——感知器【线性分类器】(三)线性分类器的松弛求解: LEMS 算法,H-K 算法【线性分类器】(四)拉格朗日乘子与支持向量机文章目录【线性分类器】(四)拉格朗日乘子与支持向量机1 高数里的拉格朗日乘子1.1 多元函数的极值1.1.1 二元函数极值的概念1.1.2 条件极值与拉格朗日乘数法2 矩阵分析里的拉格朗日乘子2.1 含有等式约束拉格朗日乘子法2.1.1 只含一个等式约束的最优化2.1.2 包含多个等式约束的最优化2.2 拉格朗

2020-12-24 22:33:57 206

原创 平安夜快乐! From:二进制人工智能

Here’s to the crazy ones.The misfits. The rebels. The troublemakers. The round pegs in the square holes. The ones who see things differently. They’re not fond of rules. And they have no respect for the status quo. You can quote them, disagree with them, .

2020-12-24 18:24:01 115

原创 【机器学习】西瓜书plus——决策树

文章目录决策树1 什么是决策树2 伪代码决策树1 什么是决策树决策树(dicision tree)是一种基本的分类与回归方法,此处主要讨论分类的决策树。。以一个二分类任务(去或不去)为例:有人给我们介绍新的对象的时候,我们就要一个个特点去判断去或不去。于是这种判断的过程就可以画成一棵树:我们将上面树结构广义化:这就是决策树的结构了,棵决策树包含一个根结点、若干个内部结点和若干个叶结点;叶节点:叶结点对应于决策结果,其他每个结点(根节点和内部节点)则对应于一个属性测试;根节点:对数据集

2020-12-23 11:35:48 74

原创 张钹院士:迈向第三代人工智能 思维导图

微信公众号二进制人工智能回复Ai3获取思维导图pdf

2020-12-20 12:46:44 68

原创 【神经网络分类器】(二)比西瓜书详细的BP网络误差反向传播推导

【神经网络分类器】(二)浅层神经网络【神经网络分类器】(一)人工神经元网络的基本概念文章目录【神经网络分类器】(二)浅层神经网络1 感知器网络2 BP网络1 感知器网络根据罗森布拉特的感知器算法,如果把输入看作是样本的特征向量,输出看作是分类结果,那么感知器就能实现一个二类的线性分类。如果我们想实现多类分类,怎么处理呢?我们可以使用多个感知器。如果我们为每一类都设计一个感知器,并且将他们并联起来,即让所有的输入都同时进入每一个感知器,则可以解决多类的分类问题,这样就构成了一个具有多类分类能力

2020-12-19 11:38:29 143 1

原创 【神经网络分类器】(一)你知道神经网络怎么用无监督算法训练吗?

人工神经元网络的基本概念首先我们从人脑发挥功能的最基本的单元,即神经元的模型出发,来了解神经网络分类器究竟是如何发挥作用的。人工神经元是生物神经元的模拟模型。生物神经元包括四个主要部分:细胞体、树突、轴突和突触。树突的作用是用于接受周围其他神经元传入的神经冲动。轴突的功能是通过轴突末梢向其他神经元传出神经冲动。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。一个神经细胞的树突,在突触处从其他神经细胞接受信号。这些信号可能是兴奋性的,也可能是抑制性的。所

2020-12-18 18:11:19 251

原创 【机器人学、机器人控视觉与控制】四足机器人MATLAB仿真

文章目录【机器人学、机器人控视觉与控制】四足机器人MATLAB仿真1 创建一条机器人腿2 单腿运动3 四腿运动【机器人学、机器人控视觉与控制】四足机器人MATLAB仿真我们的目标是创建一个四足步行机器人。首先,我们创建一个三轴机器臂,将其作为步行机器人的一条腿,并为其规划一个适合步行的轨迹,然后将四条腿组合以完成最后的步行机器人。1 创建一条机器人腿首先要确定我们的坐标系。如上图所示是机器人腿在零角度位姿时的坐标系设置。我们选择使用航空坐标体系,其xxx轴指向前,zzz轴指向下,因而yyy轴就指向

2020-12-12 14:58:11 160

原创 【pandas】(一)pandas数据结构介绍

pandas基础篇pandas是贯穿本书后续部分的主要工具。它所包含的数据结构和数据处理工具的设计使得在Python中进行数据清洗和分析非常快捷。pandas经常是和其他数值计算工具,比如NumPy和SciPy,以及数据可视化工具比如matplotlib一起使用的。pandas支持大部分NumPy语言风格的数组计算,尤其是数组函数以及没有for循环的各种数据处理。尽管pandas采用了很多NumPy的代码风格,但最大的不同在于pandas是用来处理表格型或异质型数据的。而NumPy则相反,它更适合处理同

2020-12-10 22:35:45 51

原创 机器人工具箱Attempt to execute SCRIPT DHFactor as a function,已解决

问题s='Tz(L1) Rz(q1) Ry(q2) Ty(L2) Tz(L3) Ry(q3) Tx(L6) Ty(L4) Tz(L5) Rz(q4) Ry(q5) Rz(q6)';dh=DHFactor(s)解决方法因为DHFactor是用java写的,因此你需要将.class路径放入Matlab的Java路径中,运行以下命令: startup_rvc再执行程序:s='Tz(L1) Rz(q1) Ry(q2) Ty(L2) Tz(L3) Ry(q3) Tx(L6) Ty(L4) Tz(L

2020-12-09 21:25:05 22

原创 NumPy(Numerical Python)基础篇

文章目录NumPy(Numerical Python)基础1 NumPy ndarray:多维数组对象1.1 生成ndarray1.2 ndarray的数据类型1.3 NumPy数组算术1.4 基础索引与切片1.5 布尔索引1.6 神奇索引1.7 数组转置和换轴2 通用函数:快速的逐元素数组函数NumPy(Numerical Python)基础NumPy,是Numerical Python的简称,它是目前Python数值计算中最为重要的基础包。NumPy之所以重要,其中一个原因就是它的设计对于含有大

2020-12-09 20:06:14 99

转载 数组从0开始计数有什么好处

数组从0开始计数有什么好处(1)假设你上班的地方位于一座5层的写字楼里,你爬1层楼需要10秒,那么请问你爬上5楼需要花费多少时间? 为了正确计算这个问题,我们需要使用的是:10秒*(5-1)=40秒;(2)等差数列第n项的值为:初项+公差*(n-1);(3)我们都知道20世纪是19__年,19世纪是18__年对于以上3个问题如果分别按照如下处理:(1)写字楼和地面相同的高度的那一层,计数为0层;(2)数列最初的项,计数为第0项;(3)最初的世纪计数为0世纪。就

2020-12-08 12:51:33 24

原创 最小二乘法求解线性方程组与伪逆

最小二乘法求解线性方程组与伪逆对于线性方程组Ax=bAx=bAx=b的求解。如果A是可逆的,我们可以通过方程式左右两边乘A−1A^{-1}A−1求解:x=A−1bx=A^{-1}bx=A−1b但是如果AAA是不可逆的方阵或非方阵呢?这时可以使用最小二乘法求解:首先我们来看看一些矩阵求导的相关性质:接下来我们用最小二乘法来求解方程组的解x∗x^*x∗:x∗=argmax⁡x∣∣Ax−b∣∣2x^*=arg\max_x||Ax-b||^2x∗=argxmax​∣∣Ax−b∣∣2记f(x)=

2020-12-07 13:30:50 205 1

原创 【数字图像处理】Canny算法步骤

Canny算法步骤Canny边缘检测的基本思想就是首先对图像选择一定的Gauss滤波器进行平滑滤波,然后采用非极值抑制技术进行处理得到最后的边缘图像。其步骤如下:(1)用高斯滤波器平滑图像,减少噪声。其中 g(x,y)g(x,y)g(x,y)为最小值滤波后的图像数据, G(x,y)G(x,y)G(x,y)为高斯函数。(2)用一阶偏导的有限差分来计算梯度的幅值和方向。使用一阶差分卷积模板对图像进行卷积:则可得到每个点的局部梯度:和梯度方向(3)对梯度幅值进行非极大值抑制得到细化的边缘。

2020-12-04 09:08:25 90

原创 【线性分类器】(三)线性分类器的松弛求解: LEMS 算法,H-K 算法

【线性分类器】(一)线性判别【线性分类器】(二)“深度学习”的鼻祖——感知器线性分类器的松弛求解: LEMS 算法,H-K 算法文章目录线性分类器的松弛求解: LEMS 算法,H-K 算法1 LEMS 算法2 H-K 算法1 LEMS 算法我们前面介绍了感知器算法,它以错分样本为依据来逐步调整权向量 www,最终使所有样本都能够被正确分类。但是我们看到,感知器算法中采用批量梯度下降和随机梯度下降,得到的解使不同的,甚至随机梯度下降法中,由于初始权向量设置不同、学习速率的不同和样本处理的顺序不同,都

2020-12-03 20:31:23 104

原创 【线性分类器】(二)“深度学习”的鼻祖——感知器

文章目录“深度学习”的鼻祖——感知器1 线性分类器训练的一般思路2 感知器算法的原理3 感知器算法的学习速率4 感知器算法的深入分析“深度学习”的鼻祖——感知器我们前面介绍了最简单的一种分类器形式——线性分类器【线性分类器】(一)线性判别,它是由线性判别函数及相应的分类决策规则构成的。那这个线性判别函数是如何得到的呢?如果有一个模式识别问题,我们怎么才能设计出一个合适的线性分类器,使它能对问题中的样本正确地分类呢?这就是牵涉到线性分类器训练的问题。1 线性分类器训练的一般思路在介绍感知器训练算法

2020-12-03 18:07:11 121

原创 【Matlab补充】设置鼠标可以旋转3D图

设置鼠标可以旋转3D图加上rotate3d on

2020-12-02 23:05:25 46

原创 【线性分类器】(一)线性判别

线性判别文章目录线性判别1 线性判别与非线性判别2 样本集的线性可分性3 非线性判别问题转化成线性判别问题4 多分类线性判别4.1 绝对可分方式4.2 两两可分方式4.3 最大值可分方式3 线性判别函数的几何意义1 线性判别与非线性判别我们知道,要实现模式识别,就是要在对一类事物特征的认知基础上,找到一个有效的分类决策规则,能够对新的样本正确地分类。例如已知的样本集分为两类,那么,如果能在特征空间中找到这么一条类别之间的界限,就可以通过判断待识别的样本位于界限的哪一侧,来确定样本属于哪一类。这条界限

2020-12-02 16:35:07 101

原创 分段Hermite插值推导

分段Hermite插值分段线性插值多项式S(x)S(x)S(x)在插值区间[a,b][a,b][a,b]上只能保证连续性,而不光滑。要想得到在插值区间上光滑的分段线性插值多项式,可采用分段埃尔米特(Hermite)插值,这里我们考虑在整个[a,b][a,b][a,b]上用分段三次埃尔米特插值多项式来逼近f(x)f(x)f(x)。一般的将带有导数的插值多项式称为Hermite插值多项式。如果已知函数y=f(x)y = f(x)y=f(x)在节点a=x0<x1<…<xn=ba = x_0&

2020-11-30 19:08:46 78 1

原创 【信号与系统】(十八)傅里叶变换与频域分析——周期信号的傅里叶变换

文章目录周期信号的傅里叶变换1 周期信号的傅里叶变换2 周期信号傅里叶级数与傅里叶变换的关系周期信号的傅里叶变换1 周期信号的傅里叶变换建立一个可以分析周期和非周期信号的统一方法。正、余弦信号的傅里叶变换一般周期信号的傅里叶变换周期信号分解为傅里叶级数后再进行傅里叶变换。Ω\OmegaΩ为基波频率傅里叶变换后变成不同频率有相对比例的冲激函数(点变成箭头)时域卷积等于频域乘积2 周期信号傅里叶级数与傅里叶变换的关系由傅里叶变换也可以求傅里叶级数。...

2020-11-29 20:50:40 67

原创 【信号与系统】(十七)傅里叶变换与频域分析——能量谱和功率谱

文章目录能量谱和功率谱1 能量谱1.1 信号能量1.2. 帕斯瓦尔方程(能量方程)1.3 能量密度谱E (ω)2 功率谱2.1 信号功率2.2 功率密度谱2.3 功率密度谱与自相关函数的关系能量谱和功率谱1 能量谱1.1 信号能量信号(电压或电流)f(t)f(t)f(t)在1Ω1Ω1Ω电阻上的瞬时功率为∣f(t)∣2|f(t)|^2∣f(t)∣2,在区间(−T,T)(-T, T)(−T,T)的能量为定义:时间(−∞,∞)(-∞, ∞)(−∞,∞)区间上信号的能量。如果信号能量有限,即0&

2020-11-29 20:08:40 284

原创 【机器人学、机器视觉与控制】用工具箱确定D-H参数

用工具箱确定D-H参数确定D-H参数的经典方法是系统地为每个连杆分配一个坐标系。Puma机器人的连杆坐标系就是采用标准D-H形式进行设定的,如图下图所示。然而,设定每一个坐标系上都有很强的约束,因为关节旋转必须围绕zzz轴且连杆位移必须沿xxx方向。这也为基座和末端执行器坐标系的设定施加了约束,进而最终决定了前面讨论过的零角度位姿。因此为一个全新的机械臂确定D-H参数和连杆坐标系要比想象的更加困难——即便是经验丰富的机器人专家。工具箱还支持另一种方法,它简单地将机械臂描述为一系列从末端执行器基座到顶

2020-11-24 19:17:02 69

原创 外文翻译,模式识别与机器学习的关系

模式识别与机器学习https://blog.csdn.net/qq_33414271/article/details/78682239https://www.csdn.net/article/2015-03-24/2824301#q=machine+learning,+pattern+recognition,+deep+learning&cmpt=q&tz&tzhttps://www.zhihu.com/question/38106452/answer/211218782.

2020-11-23 17:19:53 102

原创 【机器人学、机器视觉与控制】臂形机器人——机器人运动学

文章目录Arm-Type Robots臂形机器人Arm-Type Robots臂形机器人常见的机械臂:a 一个6自由度串联机械臂。通用工业机械臂它由一系列刚性连杆和转动关节组成,这种机械臂也是本文的主要讨论对象。b 四个自由度的SCARA机器人,通常用于电路板装配这种机器人在垂直方向是刚性的,而在水平面上是柔性的,因此非常适合平面作业任务。c 直角坐标机器人,机械臂在一个高架导轨上移动沿着高架轨道有一个或两个运动自由度,具有非常大的工作空间。d 并联机械臂,末端执行器由6根并联的连杆

2020-11-22 15:09:29 408

原创 【机器学习】训练集,测试集,为啥还要验证集?

机器学习为什么要有验证集

2020-11-21 09:59:08 150

原创 【Hands-On Machine Learning】机器学习的主要挑战

机器学习的主要挑战典型的机器学习:You studied the data.You selected a model.You trained it on the training data (i.e., the learning algorithm searched for the model parameter values that minimize a cost function).Finally, you applied the model to make predictions on

2020-11-20 14:07:31 140

原创 【Hands-On Machine Learning】机器学习的类型

机器学习的类型There are so many different types of Machine Learning systems that it is useful toclassify them in broad categories based on:• Whether or not they are trained with human supervision (supervised, unsuper‐vised, semisupervised, and Reinforcement Lea

2020-11-19 19:39:51 106 1

原创 pattern的数学含义

*A pattern constitutes a set of numbers or objects, in which all the members are related with each other by a specific rule. Pattern is also known as sequence. *——easycalculation.comPattern 有一系列数字或对象组成,并且它的成员之间都有具体的规律,有时也认为是序列。...

2020-11-18 22:28:42 152

原创 【信号与系统】(十六)傅里叶变换与频域分析——傅里叶变换的性质

文章目录傅里叶变换的性质1 线性性质2 奇偶性3 对称性4 尺度变换特性5 时移特性6 频移特性7 卷积定理8 时域微积分特性9 频域微积分特性10 相关定理傅里叶变换的性质意义:傅里叶变换具有唯一性。傅里叶变换变换的性质揭示了信号的时域特性和频域特性之间的内在联系。讨论傅里叶变换的性质,目的在于:•了解时频域特性的内在联系;• 利用性质求F(jω)F(jω)F(jω);•了解在通信系统领域中的应用。1 线性性质2 奇偶性下面具体研究时间函数与其频谱的奇偶虚实关系(1) f(

2020-11-18 17:43:27 341

原创 【信号与系统】(十五)傅里叶变换与频域分析——非周期信号的频谱--傅里叶变换

文章目录非周期信号的频谱--傅里叶变换1 频谱密度函数1.1 引出1.2 频谱密度函数2 傅里叶变换2.1 傅里叶变换2.2 傅里叶反变换2.3 傅里叶变换对2.4 说明3 常用函数的傅里叶变换3.1 单边指数函数3.2 双边指数函数非周期信号的频谱–傅里叶变换1 频谱密度函数1.1 引出T→∞T→∞T→∞时, f(t)f(t)f(t):周期信号 →→→非周期信号;谱线间隔Ω=2π/T→0Ω=2π/T →0Ω=2π/T→0,谱线幅度→0→0→0,周期信号的离散频谱过渡为非周期信号的连续频谱。

2020-11-18 14:05:50 114

原创 【信号与系统】(十四)傅里叶变换与频域分析——周期信号的频谱及特点

文章目录周期信号的频谱及特点1 周期信号的频谱2 单边谱和双边谱的关系3 周期信号频谱的特点4 周期信号的功率周期信号的频谱及特点频谱——信号的一种新的表示方法1 周期信号的频谱频谱:周期信号分解后,各分量的幅度和相位对于频率的变化,分别为幅度谱和相位谱。频谱图:将幅度和相位分量用一定高度的直线表示;其中幅度谱图反映了信号不同频率分量的大小。三角函数形式分解虚指数函数形式分解引入虚指数形式是为了计算上的方便。2 单边谱和双边谱的关系∣Fn∣|F_n|∣Fn​∣是nnn的偶函

2020-11-17 23:53:15 534

原创 【信号与系统】(十三)傅里叶变换与频域分析——周期信号的傅里叶级数

文章目录周期信号的傅里叶级数1 周期信号三角形式的傅里叶级数1.1 三角形式的傅里叶级数1.2 狄里赫利(Dirichlet)条件1.3 .余弦形式的傅里叶级数1.4 吉布斯现象2 周期信号波形对称性和谐波特性2.1 f(t)f(t)f(t)为偶函数——对称于纵轴f(t)=f(−t)f(t) =f(-t)f(t)=f(−t)2.2 f(t)f(t)f(t)为奇函数——对称于原点 f(t)=−f(−t)f(t) =-f(-t)f(t)=−f(−t)2.3 f(t)f(t)f(t)为奇谐函数——f(t)=–f

2020-11-17 19:56:58 65

原创 【信号与系统】(十二)傅里叶变换与频域分析——信号分解为正交函数

文章目录信号分解为正交函数1 矢量的正交分解2 信号的正交分解信号分解为正交函数1 矢量的正交分解(1)矢量正交复习:两矢量V1V_1V1​与V2V_2V2​正交,夹角为90°两正交矢量的内积为零(2)正交矢量集由两两正交的矢量组成的矢量集合。(3)非正交矢量的近似表示及误差用与V2V_2V2​成比例的矢量c12V2c_{12}V_2c12​V2​近似地表示V1V_1V1​,则误差矢量显然,当两矢量V1V_1V1​与V2V_2V2​正交时,c12=0c_{12}=0c12​=0,

2020-11-17 17:16:56 60

原创 【信号与系统】(十一)离散系统的时域分析 ——卷积和

文章目录卷积和1 序列的时域分解2 卷积和公式3 卷积和的图解法4 卷积和的不进位乘法运算5 卷积和的性质卷积和连续是卷积积分。1 序列的时域分解任意离散序列 f(k)f(k)f(k)可表示为2 卷积和公式卷积和的定义已知定义在区间(–∞,∞)(–∞,∞)(–∞,∞) 上的两个函数f1(k)f_1(k)f1​(k)和f2(k)f_2(k)f2​(k),则定义为f1(k)f_1(k)f1​(k)与f2(k)f_2(k)f2​(k)的卷积和,简称卷积;记为注意:求和是在虚设的变量 i

2020-11-16 14:42:59 57

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除