【杂】如何修复视频--> Wondershare Repairit

作者分享了从宿舍搬家过程中尝试录制Vlog的体验,遇到视频抖动和播放问题,发现WondershareRepairit软件被推荐用于视频修复。由于正版价格昂贵,作者寻求破解版并详细描述了安装过程和修复步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近日换宿舍,从一个校区搬到另一个校区,突发奇想决定用相机录一点视频~ 浅浅尝试一下录vlog才发现做短视频也并非想象中那般容易,尤其是构思内容和文案,并且实施起来也会有很多问题,比如手拿着相机录真的很抖o((⊙﹏⊙))o.哈哈哈哈哈哈哈哈哈,以及……录完以后发现无法回放视频
在网上搜了一下,发现Wondershare Repairit这个软件很多人推荐,但是正版软件太贵……我下载安装以后进入到官方网页,价格👇(吓死):
在这里插入图片描述
支持正版支持正版支持正版(但是还是等我有能力了有钱了再来支持吧,斯密马赛)。 于是开始寻找破解破解破解版,👈这个链接进去:

  • 下载压缩包(我是下载的百度网盘的链接,一百多兆还是花不了多少时间):
    在这里插入图片描述
  • 查看ReadMe.txt文件内容:
    在这里插入图片描述
  • 正常安装软件
  • 复制解码的.exe文件,并且生成一个新的快捷方式,再移动到桌面替换掉之前的快捷方式:
    在这里插入图片描述

之后就能正常使用啦~~
点击桌面快捷方式启动软件–>添加要修复的视频文件:
在这里插入图片描述
可能会现实修复失败,进入高级修复,那就直接点击“好的”:
在这里插入图片描述
高级修复需要导入一个正常的且同设备拍摄的视频文件,作为参考,进行修复:
在这里插入图片描述
在这里插入图片描述
修复完成就能预览并下载啦~
在这里插入图片描述
在这里插入图片描述

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值