问题描述
A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市决定在1号到n号枢纽间修建一条地铁。
地铁由很多段隧道组成,每段隧道连接两个交通枢纽。经过勘探,有m段隧道作为候选,两个交通枢纽之间最多只有一条候选的隧道,没有隧道两端连接着同一个交通枢纽。
现在有n家隧道施工的公司,每段候选的隧道只能由一个公司施工,每家公司施工需要的天数一致。而每家公司最多只能修建一条候选隧道。所有公司同时开始施工。
作为项目负责人,你获得了候选隧道的信息,现在你可以按自己的想法选择一部分隧道进行施工,请问修建整条地铁最少需要多少天。
输入格式
输入的第一行包含两个整数n, m,用一个空格分隔,分别表示交通枢纽的数量和候选隧道的数量。
第2行到第m+1行,每行包含三个整数a, b, c,表示枢纽a和枢纽b之间可以修建一条隧道,需要的时间为c天。
输出格式
输出一个整数,修建整条地铁线路最少需要的天数。
样例输入
6 6
1 2 4
2 3 4
3 6 7
1 4 2
4 5 5
5 6 6
样例输出
6
样例说明
可以修建的线路有两种。
第一种经过的枢纽依次为1, 2, 3, 6,所需要的时间分别是4, 4, 7,则整条地铁线需要7天修完;
第二种经过的枢纽依次为1, 4, 5, 6,所需要的时间分别是2, 5, 6,则整条地铁线需要6天修完。
第二种方案所用的天数更少。
评测用例规模与约定
对于20%的评测用例,1 ≤ n ≤ 10,1 ≤ m ≤ 20;
对于40%的评测用例,1 ≤ n ≤ 100,1 ≤ m ≤ 1000;
对于60%的评测用例,1 ≤ n ≤ 1000,1 ≤ m ≤ 10000,1 ≤ c ≤ 1000;
对于80%的评测用例,1 ≤ n ≤ 10000,1 ≤ m ≤ 100000;
对于100%的评测用例,1 ≤ n ≤ 100000,1 ≤ m ≤ 200000,1 ≤ a, b ≤ n,1 ≤ c ≤ 1000000。
所有评测用例保证在所有候选隧道都修通时1号枢纽可以通过隧道到达其他所有枢纽。
这里采用的是 Kruskal 最小生成树和并查集算法
import java.util.Scanner;
import java.util.ArrayList;
import java.util.Collections;
public class Main {
private int[] flag;
private int unionFind(int e) {
while (flag[e] != e) {
e = flag[e];
}
return e;
}
private static class Rode implements Comparable<Rode>{
private int a;
private int b;
private int w;
public Rode(int a, int b, int w) {
this.a = a;
this.b = b;
this.w = w;
}
@Override
public int compareTo(Main.Rode o) {
if (this.w < o.w)
return -1;
else if (this.w > o.w)
return 1;
else
return 0;
}
}
public static void main(String[] args) {
Scanner In = new Scanner(System.in);
int N = In.nextInt();
int m = In.nextInt();
int ans = 0;
Main memb = new Main();
memb.flag = new int[N + 10];
ArrayList<Rode> roads = new ArrayList<>(200010);
for (int i = 0; i <= N; i++) {
memb.flag[i] = i;
}
for (int i = 0; i < m; i++) {
int a = In.nextInt();
int b = In.nextInt();
int w = In.nextInt();
roads.add(new Rode(a, b, w));
}
Collections.sort(roads);
for (int i = 0; i < m; i++) {
int x = memb.unionFind(roads.get(i).a);
int y = memb.unionFind(roads.get(i).b);
if (x != y) {
if (x > y)
memb.flag[x] = y;
else
memb.flag[y] = x;
}
ans = roads.get(i).w;
if (memb.unionFind(N) == 1)
break;
}
System.out.println(ans);
}
}