selenium 爬虫的数据实战

引言

众所周知,Python 有很多的爬虫工具,例如,requests、scrapy、selenium等。但是爬虫有个最难搞的东西就是反爬虫了,使用 requests、scrapy框架爬取速度飞快,但是遇到反爬的网站就得斗智斗勇半天甚至好几天。因此,如果仅仅是一些小项目,没有必要使用其他工具,就使用 selenium 就可以了。

selenium 实战

selenium 的使用方法非常简单,需要进行一些配置,这里我使用的是 谷歌浏览器,其他浏览器请自行搜索~

安装 selenium
pip install selenium

安装谷歌浏览器以及谷歌浏览器驱动

浏览器驱动 是和 浏览器对应的。 不同的浏览器 需要选择不同的浏览器驱动。

目前主流的浏览器中,谷歌 Chrome 浏览器对 Selenium自动化的支持更加成熟一些。

推荐大家使用 Chrome浏览器 。

确保Chrome浏览器安装好以后,请大家打开下面的连接,访问Chrome 浏览器的驱动下载页面

注意浏览器驱动 必须要和浏览器版本匹配,大版本一致就可以了。

比如,谷歌浏览器版本为 103,那么就下载 103 开头的就可以了~

省略浏览器驱动路径

下载的浏览器驱动是一个压缩包, 解压之后放到一个容易找到的位置,例如 C 盘根目录

我们可以把浏览器驱动 所在目录 加入环境变量 Path , 写代码时,就可以无需指定浏览器驱动路径了,像下面这样。

wd = webdriver.Chrome()

然后可以配置一些初始化的参数,代码这里我整理好了,直接拿去用就对了,url为1688网站,已经提前搜索了商品的url地址。

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver import ChromeOptions,ActionChains

# 1688搜索页商品数据url
url = 'https://s.1688.com/selloffer/imall_search.htm?keywords=%C5%AE%D7%B0&n=y&netType=1%2C11%2C16&spm=a260k.22518165.search.0'

# 初始化浏览器
def driver_init():
    # 加载配置数据
    profile_dir = r'--user-data-dir=C:\Users\hjl\AppData\Local\Google\Chrome\User Data'
    c_option = webdriver.ChromeOptions()
    c_option.add_experimental_option('useAutomationExtension', False)
    c_option.add_experimental_option('excludeSwitches', ['enable-automation'])
    prefs = {
        'profile.default_content_setting_values':
            {
                'notifications': 2
            },
        'profile.password_manager_enabled': False,
        'credentials_enable_service': False
    }
    c_option.add_experimental_option('prefs', prefs)
    # 开发者模式防止被识别出
    # 网址:https://blog.csdn.net/dslkfajoaijfdoj/article/details/109146051
    c_option.add_experimental_option('excludeSwitches', ['enable-automation'])
    c_option.add_argument("--disable-blink-features=AutomationControlled")
    # c_option.add_experimental_option('w3c', False)
    c_option.add_argument(profile_dir)
    driver = webdriver.Chrome(chrome_options=c_option)
    # 执行cdp命令
    driver.execute_cdp_cmd("Page.addScriptToEvaluateOnNewDocument", {
        "source": """
                    Object.defineProperty(navigator, 'webdriver', {
                       get: () => undefined
                    })
                  """
    })
    return driver


接着,定义一个获取商品标题、价格、购买人数等参数的方法

def get_goods_info(driver):
    # 获取商品信息的列表
    goods_list =  driver.find_element(By.ID, 'sm-offer-list').find_elements(By.CLASS_NAME, 'space-offer-card-box')
    print('-----------------')
    print('开始爬取数据,数据长度为:', len(goods_list))
    for li in goods_list:
        link_div = li.find_element(By.CLASS_NAME, 'mojar-element-title').find_element(By.TAG_NAME, 'a')
        link = link_div.get_attribute('href')
        title = li.find_element(By.CLASS_NAME, 'mojar-element-title').find_element(By.CLASS_NAME, 'title').text

        try:
            # 这个地方容易报错,所以用try,不知道为什么,有毒
            price_div = li.find_element(By.CLASS_NAME, 'mojar-element-price')
            price = price_div.find_element(By.CLASS_NAME, 'showPricec').text
            sale_sum = price_div.find_element(By.CLASS_NAME, 'sale').text
            if sale_sum == '':
                sale_sum = '0'
        except:
            continue
        print('-----------------')
        print(title, price, sale_sum)

最后,使用程序入口函数启动爬虫程序~

注意,因为1688有部分商品数据是需要动态加载的,因此我们需要让爬虫程序滑动一下页面,触发数据加载之后再去爬取。

# 程序入口
if __name__ == '__main__':
    driver = driver_init()
    driver.implicitly_wait(3)  
    # 打开链接获取商品信息
    driver.get(url)
    # 睡眠1秒,等待浏览器加载完毕
    time.sleep(2)
    # 循环爬取40页数据
    for i in range(40):
        print(f'-----------------第{i+1}页-----------------')
        # 等待浏览器加载完毕
        driver.implicitly_wait(7)
        # 获取当前窗口句柄
        original_window = driver.current_window_handle
        # 获取下一页的按钮
        next_btn = driver.find_element(By.CLASS_NAME, 'fui-next')
        time.sleep(1)
        # 慢慢向下滚动
        for i in range(1, 3):
            driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
            time.sleep(1)
        # 再慢慢向上滚动
        for i in range(1, 3):
            driver.execute_script("window.scrollTo(0, 0);")
            time.sleep(1)
        # 滑动鼠标到页面中部
        ActionChains(driver).move_by_offset(0, 300).perform()
        time.sleep(1)

        # 获取商品信息
        get_goods_info(driver)
        # 点击下一页
        try:
           next_btn.click()
        except:
            break


如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值