随着人工智能技术的不断进步和深化,大模型已经成为深度学习领域的核心驱动力,是近年来备受关注和研究的热门领域之一。
今年8月31日,百度、字节、商汤、中科院旗下紫东太初、百川智能、智谱华章等8家企业和机构的大模型产品通过首批《生成式人工智能服务管理暂行办法》备案,可正式上线面向公众提供服务。
大模型的出现不仅改变了我们对人工智能的认识,更在深度学习的应用领域引领了新的革命。本文介绍什么是大模型,系统的分析其应用及发展。
01
什么是大模型
大模型,顾名思义,指的是具有庞大参数数量、计算需求高的机器学习模型。与传统的小规模模型相比,大模型在预训练阶段通过大量数据自我学习,然后通过微调在特定任务上发挥作用。
大模型的关键特点在于其庞大的参数数量,例如,GPT-3模型拥有1,750亿个参数,GPT-4模型推测拥有1.8万亿参数,中科院自动化所的紫东太初也是千亿级参数的大模型,阿里的通义千文包含1000亿个参数。
大模型庞大的参数代表了模型的权重和连接关系,这使得大模型能够学习更多的细节和抽象特征,从而提高模型的泛化能力和应用范围。例如,自然语言处理领域的大模型能够理解更复杂的语义关系,生成更自然流畅的文本;计算机视觉领域的大模型能够更精准地识别图像中的物体和特征。
近年国内外主要发布的大模型
资料来源:浙商证券
02
大模型的分类
大模型是人工智能领域中的一项重要技术,根据应用领域和任务类型的不同,可以分为几种不同的分类。
1.自然语言处理模型
自然语言处理模型是大模型在处理文本和语言任务方面的应用。这类模型被广泛用于机器翻译、文本生成、情感分析、问答系统等任务。其中,百度的文心大模型、字节跳动的Byte BERT(基于Bidirectional Encoder Representations from Transformer 深度双向语言表征模型) 、OpenAI的GPT(Generative Pre-training Transformer 生成式预训练模型)系列就是一种典型的自然语言处理大模型,它能够根据输入的文本生成连贯、富有创意的文章。
2.计算机视觉模型
计算机视觉模型是大模型在处理图像和视觉任务方面的应用。这类模型在图像分类、目标检测、图像生成等领域具有出色