伯克利数学博士资格一考题

这是伯克利2013年秋数学博士资格的一道数论题。令 m=561,若 a 与m互素,证明
a m − 1 ≡ 1 ( m o d m ) . a^{m-1} \equiv 1 \pmod{m} . am11(modm).

分析: 这道题和Fermat小定理有很深的背景。Fermat小定理说: 若 p
为素数,对任意整数 a, 且 a 与 p 互素 (也即 p ∤ a p \nmid a pa,除了 k × p k\times p k×p的数),满足 a p − 1 ≡ 1 ( m o d p ) a^{p-1} \equiv 1 \pmod{p} ap11(modp)

我们自然要问,Fermat小定理的逆命题是否依然成立呢?也就是说,如果对所有与m互素的a,都满足
a m − 1 ≡ 1 ( m o d m ) , a^{m-1} \equiv 1 \pmod{m} , am11(modm),
请问m是否一定是素数?显然这道题是Fermat小定理的逆命题不成立的一个反例。下面我们来证明。

由于 m = 561 = 3 × 11 × 17 m=561=3\times11 \times 17 m=561=3×11×17 ,所以m不是素数。 另外 a 与 m
互素,因此 3 ∤ a , 11 ∤ a , 17 ∤ a 3 \nmid a, 11 \nmid a, 17 \nmid a 3a,11a,17a,则根据Fermat小定理有
a 2 ≡ 1 (   m o d   3 ) , a 10 ≡ 1 (   m o d   11 ) , a 16 ≡ 1 (   m o d   17 ) a^{2} \equiv 1(\bmod 3), \quad a^{10} \equiv 1(\bmod 11), \quad a^{16} \equiv 1(\bmod 17) a21(mod3),a101(mod11),a161(mod17)
但是 2 ∣ 560 , 10 ∣ 560 , 16 ∣ 560 2 | 560, 10 | 560, 16 | 560 2∣560,10∣560,16∣560,所以 a 560 a^{560} a560对3,11,17中的每一个模也都余1,即
a 560 ≡ 1 (   m o d   3 ) , a 560 ≡ 1 (   m o d   11 ) , a 560 ≡ 1 (   m o d   17 ) a^{560} \equiv 1(\bmod 3), \quad a^{560} \equiv 1(\bmod 11), \quad a^{560} \equiv 1(\bmod 17) a5601(mod3),a5601(mod11),a5601(mod17)由于 3 , 11 , 17 3,11,17 3,11,17 的最小公倍数为 3 × 11 × 17 = 561 = m 3\times11 \times 17 = 561=m 3×11×17=561=m,根据同余性质,可知 a 560 ≡ 1 ( m o d 561 ) a^{560} \equiv 1 \pmod{561} a5601(mod561) 成立。

这个反例说明了Fermat小定理的逆命题是不成立的

整个证明非常简洁,但是我们了解了出题背景后,就会感觉这题倍感亲切,而不是孤零零的了。另外费马小定理只是欧拉定理的一个特殊情形。关于欧拉定理请参考我的另外一篇文章从欧拉函数、欧拉定理到RSA加解密

原文链接


欢迎关注我的微信公众号[数学345]。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值