2024新课标I卷数学高考压轴题-可分数列详细解题过程

晚上陪女儿到图书馆看书写作业,顺便做了下2024新课标I卷数学高考压轴题。当时写在餐巾纸上,晚上洗完澡整理成文字如下:

19. 设 m m m 为正整数,数列 a 1 , a 2 , ⋯   , a 4 m + 2 a_1, a_2, \cdots, a_{4 m+2} a1,a2,,a4m+2 是公差不为 0
的等差数列, 若从中删去两项 a i a_i ai a j ( i < j ) a_j(i < j) aj(i<j) 后剩余的 4 m 4 m 4m
项可被平均分为 m m m 组, 且每组的 4 个数都能构成等差数列, 则称数列
a 1 , a 2 , ⋯   , a 4 m + 2 a_1, a_2, \cdots, a_{4 m+2} a1,a2,,a4m+2 ( i , j ) (i, j) (i,j) 一一可分数列.

(1)写出所有的 ( i , j ) , 1 ≤ i < j ≤ 6 (i, j), 1 \leq i < j \leq 6 (i,j),1i<j6, 使数列
a 1 , a 2 , ⋯   , a 6 a_1, a_2, \cdots, a_6 a1,a2,,a6 ( i , j ) (i, j) (i,j) 一一可分数列;

(2)当 m ≥ 3 m \geq 3 m3 时,证明:数列 a 1 , a 2 , ⋯   , a 4 m + 2 a_1, a_2, \cdots, a_{4 m+2} a1,a2,,a4m+2
( 2 , 13 ) (2,13) (2,13) 一一可分数列;

(3) 从 1 , 2 , ⋯   , 4 m + 2 1,2, \cdots, 4 m+2 1,2,,4m+2 中一次任取两个数 i i i j ( i < j ) j(i < j) j(i<j), 记数列
a 1 , a 2 , ⋯   , a 4 n + 2 a_1, a_2, \cdots, a_{4 n+2} a1,a2,,a4n+2 ( i , j ) (i, j) (i,j) 一一可分数列的概率为 P m P_m Pm,
证明: P m > 1 8 P_m > \frac{1}{8} Pm>81.

解: (1) 简单,为了考生熟悉可分数列的定义。
( 1 , 2 ) , ( 5 , 6 ) , ( 1 , 6 ) (1, 2), (5, 6), (1, 6) (1,2),(5,6),(1,6)

(2) 尝试一下,便不难, m=3 时,有
{ 1 , 4 , 7 , 10 3 , 6 , 9 , 12 5 , 8 , 11 , 14 \begin{aligned} \left\{ \begin{array}{ll} 1, 4, 7, 10\\ 3, 6, 9, 12\\ 5, 8, 11, 14\\ \end{array} \right. \end{aligned} 1,4,7,103,6,9,125,8,11,14
14 之后剩下的都是连续的,每连续4个为一组即可。因此
m > 3 m > 3 m>3时,上面的分组方法都成立。

(3)需要冷静思考和大胆猜测验证。

如果 a i + 1 , a i + 2 , … , a j − 1 a_{i+1}, a_{i+2}, \dots, a_{j-1} ai+1,ai+2,,aj1
的总数恰好可以整除4,那么剩下的 ( a 1 , … , a i − 1 ) (a_1, \dots, a_{i-1}) (a1,,ai1),
( a j + 1 , … , a 4 m + 2 ) (a_{j+1}, \dots, a_{4m+2}) (aj+1,,a4m+2) 2 段的总数也可以整除4,因此
i = 4 k + 1 , j = 4 n + 2 , ( k ≤ n ) i = 4k + 1, j = 4n + 2, (k \le n) i=4k+1,j=4n+2,(kn)
是一种可分数列的情况。 注:
手写时,我使用m,n字母, i = 4 m + 1 , j = 4 n + 2 , ( m < n ) i=4m+1, j=4n+2, (m < n) i=4m+1,j=4n+2,(m<n), m 和题中的m
字母重复,容易混淆。

概率可以这样估计。取出1个数除以4余1的概率 P i = 1 4 P_i = \frac{1}{4} Pi=41,
同理取出1个数除以4余2的概率 P j = 1 4 P_j = \frac{1}{4} Pj=41,因此这样的 ( i , j ) (i,j) (i,j)的概率可以这样估计
P i , j = 1 4 × 1 4 = 1 16 P_{i,j} = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16} Pi,j=41×41=161
更精确的概率可以这样算
P i , j = ( m + 2 ) ( m + 1 ) / 2 C 4 m + 2 2 = ( m + 2 ) ( m + 1 ) / 2 8 m 2 + 6 m + 1 P_{i, j} = \frac{(m+2)(m+1)/2}{C_{4m+2}^2} = \frac{(m+2)(m+1)/2}{8m^2+6m+1} Pi,j=C4m+22(m+2)(m+1)/2=8m2+6m+1(m+2)(m+1)/2
因为i有m+1种选择,j也有m+1种选择,因此 ( i , j ) (i,j) (i,j)共有 ( m + 1 ) 2 (m+1)^2 (m+1)2种组合,这些组合中满足 i < j i < j i<j的只有 ( m + 2 ) ( m + 1 ) / 2 (m+2)(m+1)/2 (m+2)(m+1)/2种。

结合(2)猜测 ( i = 4 k + 2 , j = 4 n + 1 , n ≥ ( k + 1 ) ) (i=4k+2, j=4n+1, n \ge (k + 1)) (i=4k+2,j=4n+1,n(k+1)) 也可以满足,先看 m = 2
的情形:
1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1,2,3,4,5,6,7,8,9,10
i = 2 , j = 9 i=2, j=9 i=2,j=9时,按如下
{ 1 , 3 , 5 , 7 4 , 6 , 8 , 10 \begin{aligned} \left\{ \begin{array}{ll} 1, 3, 5, 7\\ 4, 6, 8, 10\\ \end{array} \right. \end{aligned} {1,3,5,74,6,8,10
分组,可满足。不过 i = 2 , j = 5 时 i=2, j= 5时 i=2,j=5 不满足,影响不大,调整猜测
( i = 4 k + 2 , j = 4 n + 1 , n > ( k + 1 ) ) (i=4k+2, j=4n+1, n > (k + 1)) (i=4k+2,j=4n+1,n>(k+1))
可满足,观察(2)1-14
和刚才1-10的例子,从 a 4 k + 1 a_{4k+1} a4k+1开始到 a 4 n + 2 a_{4n+2} a4n+2,下标从1开始,看作一个新的数列 a 1 , a 2 , … , a 4 ( n − k ) + 2 a_1, a_2, \dots, a_{4(n-k)+2} a1,a2,,a4(nk)+2,记 N = ( n − k ) N=(n-k) N=(nk),都可以按照下面的规律构造分组
{ 1 , N + 1 , 2 N + 1 , 3 N + 1 3 , N + 3 , 2 N + 3 , 3 N + 3 4 , N + 4 , 2 N + 4 , 3 N + 4 ⋮ N + 2 , 2 N + 2 , 3 N + 2 , 4 N + 2 \begin{aligned} \left\{ \begin{array}{ll} 1, N+1, 2N+1, 3N+1\\ 3, N+3, 2N+3, 3N+3\\ 4, N+4, 2N+4, 3N+4\\ \vdots \\ N+2, 2N+2, 3N+2, 4N+2 \end{array} \right. \end{aligned} 1,N+1,2N+1,3N+13,N+3,2N+3,3N+34,N+4,2N+4,3N+4N+2,2N+2,3N+2,4N+2
剩下的2段 a 1 a_1 a1 a 4 k a_{4k} a4k
a 4 n + 3 a_{4n+3} a4n+3 a 4 m + 2 a_{4m+2} a4m+2是连续的,且恰好都可以整除4,每连续4个为一组即可。

因此 ( i = 4 k + 2 , j = 4 n + 1 , n > ( k + 1 ) ) (i=4k+2, j=4n+1, n > (k + 1)) (i=4k+2,j=4n+1,n>(k+1))也是可分数列。同样,概率估计约为 P i , j = 1 16 P_{i,j}=\frac{1}{16} Pi,j=161

更精确的概率为:
P i , j = m ( m − 1 ) / 2 C 4 m + 2 2 P_{i,j} = \frac{m(m-1)/2}{C_{4m+2}^2} Pi,j=C4m+22m(m1)/2

因此
P m = ( m + 2 ) ( m + 1 ) / 2 C 4 m + 2 2 + m ( m − 1 ) / 2 C 4 m + 2 2 = m 2 + m + 1 8 m 2 + 6 m + 1 > 1 8 \begin{aligned} P_m &= \frac{(m+2)(m+1)/2}{C_{4m+2}^2} + \frac{m(m-1)/2}{C_{4m+2}^2} \\ &=\frac{m^2+m+1}{8m^2+6m+1} \\ & > \frac{1}{8} \end{aligned} Pm=C4m+22(m+2)(m+1)/2+C4m+22m(m1)/2=8m2+6m+1m2+m+1>81

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值