2024新课标I卷数学高考压轴题-可分数列详细解题过程

晚上陪女儿到图书馆看书写作业,顺便做了下2024新课标I卷数学高考压轴题。当时写在餐巾纸上,晚上洗完澡整理成文字如下:

19. 设 mmm 为正整数,数列 a1,a2,⋯ ,a4m+2a_1, a_2, \cdots, a_{4 m+2}a1,a2,,a4m+2 是公差不为 0
的等差数列, 若从中删去两项 aia_iaiaj(i<j)a_j(i < j)aj(i<j) 后剩余的 4m4 m4m
项可被平均分为 mmm 组, 且每组的 4 个数都能构成等差数列, 则称数列
a1,a2,⋯ ,a4m+2a_1, a_2, \cdots, a_{4 m+2}a1,a2,,a4m+2(i,j)(i, j)(i,j) 一一可分数列.

(1)写出所有的 (i,j),1≤i<j≤6(i, j), 1 \leq i < j \leq 6(i,j),1i<j6, 使数列
a1,a2,⋯ ,a6a_1, a_2, \cdots, a_6a1,a2,,a6(i,j)(i, j)(i,j) 一一可分数列;

(2)当 m≥3m \geq 3m3 时,证明:数列 a1,a2,⋯ ,a4m+2a_1, a_2, \cdots, a_{4 m+2}a1,a2,,a4m+2
(2,13)(2,13)(2,13) 一一可分数列;

(3) 从 1,2,⋯ ,4m+21,2, \cdots, 4 m+21,2,,4m+2 中一次任取两个数 iiij(i<j)j(i < j)j(i<j), 记数列
a1,a2,⋯ ,a4n+2a_1, a_2, \cdots, a_{4 n+2}a1,a2,,a4n+2(i,j)(i, j)(i,j) 一一可分数列的概率为 PmP_mPm,
证明: Pm>18P_m > \frac{1}{8}Pm>81.

解: (1) 简单,为了考生熟悉可分数列的定义。
(1,2),(5,6),(1,6)(1, 2), (5, 6), (1, 6)(1,2),(5,6),(1,6)

(2) 尝试一下,便不难, m=3 时,有
{1,4,7,103,6,9,125,8,11,14\begin{aligned} \left\{ \begin{array}{ll} 1, 4, 7, 10\\ 3, 6, 9, 12\\ 5, 8, 11, 14\\ \end{array} \right. \end{aligned}1,4,7,103,6,9,125,8,11,14
14 之后剩下的都是连续的,每连续4个为一组即可。因此
m>3m > 3m>3时,上面的分组方法都成立。

(3)需要冷静思考和大胆猜测验证。

如果 ai+1,ai+2,…,aj−1a_{i+1}, a_{i+2}, \dots, a_{j-1}ai+1,ai+2,,aj1
的总数恰好可以整除4,那么剩下的(a1,…,ai−1)(a_1, \dots, a_{i-1})(a1,,ai1),
(aj+1,…,a4m+2)(a_{j+1}, \dots, a_{4m+2})(aj+1,,a4m+2) 2 段的总数也可以整除4,因此
i=4k+1,j=4n+2,(k≤n)i = 4k + 1, j = 4n + 2, (k \le n)i=4k+1,j=4n+2,(kn)
是一种可分数列的情况。 注:
手写时,我使用m,n字母,i=4m+1,j=4n+2,(m<n)i=4m+1, j=4n+2, (m < n)i=4m+1,j=4n+2,(m<n), m 和题中的m
字母重复,容易混淆。

概率可以这样估计。取出1个数除以4余1的概率Pi=14P_i = \frac{1}{4}Pi=41,
同理取出1个数除以4余2的概率Pj=14P_j = \frac{1}{4}Pj=41,因此这样的(i,j)(i,j)(i,j)的概率可以这样估计
Pi,j=14×14=116P_{i,j} = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}Pi,j=41×41=161
更精确的概率可以这样算
Pi,j=(m+2)(m+1)/2C4m+22=(m+2)(m+1)/28m2+6m+1P_{i, j} = \frac{(m+2)(m+1)/2}{C_{4m+2}^2} = \frac{(m+2)(m+1)/2}{8m^2+6m+1}Pi,j=C4m+22(m+2)(m+1)/2=8m2+6m+1(m+2)(m+1)/2
因为i有m+1种选择,j也有m+1种选择,因此(i,j)(i,j)(i,j)共有(m+1)2(m+1)^2(m+1)2种组合,这些组合中满足i<ji < ji<j的只有(m+2)(m+1)/2(m+2)(m+1)/2(m+2)(m+1)/2种。

结合(2)猜测 (i=4k+2,j=4n+1,n≥(k+1))(i=4k+2, j=4n+1, n \ge (k + 1))(i=4k+2,j=4n+1,n(k+1)) 也可以满足,先看 m = 2
的情形:
1,2,3,4,5,6,7,8,9,101, 2, 3, 4, 5, 6, 7, 8, 9, 101,2,3,4,5,6,7,8,9,10
i=2,j=9i=2, j=9i=2,j=9时,按如下
{1,3,5,74,6,8,10\begin{aligned} \left\{ \begin{array}{ll} 1, 3, 5, 7\\ 4, 6, 8, 10\\ \end{array} \right. \end{aligned}{1,3,5,74,6,8,10
分组,可满足。不过 i=2,j=5时i=2, j= 5时i=2,j=5 不满足,影响不大,调整猜测
(i=4k+2,j=4n+1,n>(k+1))(i=4k+2, j=4n+1, n > (k + 1))(i=4k+2,j=4n+1,n>(k+1))
可满足,观察(2)1-14
和刚才1-10的例子,从a4k+1a_{4k+1}a4k+1开始到a4n+2a_{4n+2}a4n+2,下标从1开始,看作一个新的数列a1,a2,…,a4(n−k)+2a_1, a_2, \dots, a_{4(n-k)+2}a1,a2,,a4(nk)+2,记N=(n−k)N=(n-k)N=(nk),都可以按照下面的规律构造分组
{1,N+1,2N+1,3N+13,N+3,2N+3,3N+34,N+4,2N+4,3N+4⋮N+2,2N+2,3N+2,4N+2\begin{aligned} \left\{ \begin{array}{ll} 1, N+1, 2N+1, 3N+1\\ 3, N+3, 2N+3, 3N+3\\ 4, N+4, 2N+4, 3N+4\\ \vdots \\ N+2, 2N+2, 3N+2, 4N+2 \end{array} \right. \end{aligned}1,N+1,2N+1,3N+13,N+3,2N+3,3N+34,N+4,2N+4,3N+4N+2,2N+2,3N+2,4N+2
剩下的2段a1a_1a1a4ka_{4k}a4k
a4n+3a_{4n+3}a4n+3a4m+2a_{4m+2}a4m+2是连续的,且恰好都可以整除4,每连续4个为一组即可。

因此(i=4k+2,j=4n+1,n>(k+1))(i=4k+2, j=4n+1, n > (k + 1))(i=4k+2,j=4n+1,n>(k+1))也是可分数列。同样,概率估计约为Pi,j=116P_{i,j}=\frac{1}{16}Pi,j=161

更精确的概率为:
Pi,j=m(m−1)/2C4m+22P_{i,j} = \frac{m(m-1)/2}{C_{4m+2}^2}Pi,j=C4m+22m(m1)/2

因此
Pm=(m+2)(m+1)/2C4m+22+m(m−1)/2C4m+22=m2+m+18m2+6m+1>18\begin{aligned} P_m &= \frac{(m+2)(m+1)/2}{C_{4m+2}^2} + \frac{m(m-1)/2}{C_{4m+2}^2} \\ &=\frac{m^2+m+1}{8m^2+6m+1} \\ & > \frac{1}{8} \end{aligned}Pm=C4m+22(m+2)(m+1)/2+C4m+22m(m1)/2=8m2+6m+1m2+m+1>81

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值