晚上陪女儿到图书馆看书写作业,顺便做了下2024新课标I卷数学高考压轴题。当时写在餐巾纸上,晚上洗完澡整理成文字如下:
19. 设
m
m
m 为正整数,数列
a
1
,
a
2
,
⋯
,
a
4
m
+
2
a_1, a_2, \cdots, a_{4 m+2}
a1,a2,⋯,a4m+2 是公差不为 0
的等差数列, 若从中删去两项
a
i
a_i
ai 和
a
j
(
i
<
j
)
a_j(i < j)
aj(i<j) 后剩余的
4
m
4 m
4m
项可被平均分为
m
m
m 组, 且每组的 4 个数都能构成等差数列, 则称数列
a
1
,
a
2
,
⋯
,
a
4
m
+
2
a_1, a_2, \cdots, a_{4 m+2}
a1,a2,⋯,a4m+2 是
(
i
,
j
)
(i, j)
(i,j) 一一可分数列.
(1)写出所有的
(
i
,
j
)
,
1
≤
i
<
j
≤
6
(i, j), 1 \leq i < j \leq 6
(i,j),1≤i<j≤6, 使数列
a
1
,
a
2
,
⋯
,
a
6
a_1, a_2, \cdots, a_6
a1,a2,⋯,a6 是
(
i
,
j
)
(i, j)
(i,j) 一一可分数列;
(2)当
m
≥
3
m \geq 3
m≥3 时,证明:数列
a
1
,
a
2
,
⋯
,
a
4
m
+
2
a_1, a_2, \cdots, a_{4 m+2}
a1,a2,⋯,a4m+2 是
(
2
,
13
)
(2,13)
(2,13) 一一可分数列;
(3) 从
1
,
2
,
⋯
,
4
m
+
2
1,2, \cdots, 4 m+2
1,2,⋯,4m+2 中一次任取两个数
i
i
i 和
j
(
i
<
j
)
j(i < j)
j(i<j), 记数列
a
1
,
a
2
,
⋯
,
a
4
n
+
2
a_1, a_2, \cdots, a_{4 n+2}
a1,a2,⋯,a4n+2 是
(
i
,
j
)
(i, j)
(i,j) 一一可分数列的概率为
P
m
P_m
Pm,
证明:
P
m
>
1
8
P_m > \frac{1}{8}
Pm>81.
解: (1) 简单,为了考生熟悉可分数列的定义。
(
1
,
2
)
,
(
5
,
6
)
,
(
1
,
6
)
(1, 2), (5, 6), (1, 6)
(1,2),(5,6),(1,6)
(2) 尝试一下,便不难, m=3 时,有
{
1
,
4
,
7
,
10
3
,
6
,
9
,
12
5
,
8
,
11
,
14
\begin{aligned} \left\{ \begin{array}{ll} 1, 4, 7, 10\\ 3, 6, 9, 12\\ 5, 8, 11, 14\\ \end{array} \right. \end{aligned}
⎩
⎨
⎧1,4,7,103,6,9,125,8,11,14
14 之后剩下的都是连续的,每连续4个为一组即可。因此
m
>
3
m > 3
m>3时,上面的分组方法都成立。
(3)需要冷静思考和大胆猜测验证。
如果
a
i
+
1
,
a
i
+
2
,
…
,
a
j
−
1
a_{i+1}, a_{i+2}, \dots, a_{j-1}
ai+1,ai+2,…,aj−1
的总数恰好可以整除4,那么剩下的
(
a
1
,
…
,
a
i
−
1
)
(a_1, \dots, a_{i-1})
(a1,…,ai−1),
(
a
j
+
1
,
…
,
a
4
m
+
2
)
(a_{j+1}, \dots, a_{4m+2})
(aj+1,…,a4m+2) 2 段的总数也可以整除4,因此
i
=
4
k
+
1
,
j
=
4
n
+
2
,
(
k
≤
n
)
i = 4k + 1, j = 4n + 2, (k \le n)
i=4k+1,j=4n+2,(k≤n)
是一种可分数列的情况。 注:
手写时,我使用m,n字母,
i
=
4
m
+
1
,
j
=
4
n
+
2
,
(
m
<
n
)
i=4m+1, j=4n+2, (m < n)
i=4m+1,j=4n+2,(m<n), m 和题中的m
字母重复,容易混淆。
概率可以这样估计。取出1个数除以4余1的概率
P
i
=
1
4
P_i = \frac{1}{4}
Pi=41,
同理取出1个数除以4余2的概率
P
j
=
1
4
P_j = \frac{1}{4}
Pj=41,因此这样的
(
i
,
j
)
(i,j)
(i,j)的概率可以这样估计
P
i
,
j
=
1
4
×
1
4
=
1
16
P_{i,j} = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}
Pi,j=41×41=161
更精确的概率可以这样算
P
i
,
j
=
(
m
+
2
)
(
m
+
1
)
/
2
C
4
m
+
2
2
=
(
m
+
2
)
(
m
+
1
)
/
2
8
m
2
+
6
m
+
1
P_{i, j} = \frac{(m+2)(m+1)/2}{C_{4m+2}^2} = \frac{(m+2)(m+1)/2}{8m^2+6m+1}
Pi,j=C4m+22(m+2)(m+1)/2=8m2+6m+1(m+2)(m+1)/2
因为i有m+1种选择,j也有m+1种选择,因此
(
i
,
j
)
(i,j)
(i,j)共有
(
m
+
1
)
2
(m+1)^2
(m+1)2种组合,这些组合中满足
i
<
j
i < j
i<j的只有
(
m
+
2
)
(
m
+
1
)
/
2
(m+2)(m+1)/2
(m+2)(m+1)/2种。
结合(2)猜测
(
i
=
4
k
+
2
,
j
=
4
n
+
1
,
n
≥
(
k
+
1
)
)
(i=4k+2, j=4n+1, n \ge (k + 1))
(i=4k+2,j=4n+1,n≥(k+1)) 也可以满足,先看 m = 2
的情形:
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
1,2,3,4,5,6,7,8,9,10
当
i
=
2
,
j
=
9
i=2, j=9
i=2,j=9时,按如下
{
1
,
3
,
5
,
7
4
,
6
,
8
,
10
\begin{aligned} \left\{ \begin{array}{ll} 1, 3, 5, 7\\ 4, 6, 8, 10\\ \end{array} \right. \end{aligned}
{1,3,5,74,6,8,10
分组,可满足。不过
i
=
2
,
j
=
5
时
i=2, j= 5时
i=2,j=5时 不满足,影响不大,调整猜测
(
i
=
4
k
+
2
,
j
=
4
n
+
1
,
n
>
(
k
+
1
)
)
(i=4k+2, j=4n+1, n > (k + 1))
(i=4k+2,j=4n+1,n>(k+1))
可满足,观察(2)1-14
和刚才1-10的例子,从
a
4
k
+
1
a_{4k+1}
a4k+1开始到
a
4
n
+
2
a_{4n+2}
a4n+2,下标从1开始,看作一个新的数列
a
1
,
a
2
,
…
,
a
4
(
n
−
k
)
+
2
a_1, a_2, \dots, a_{4(n-k)+2}
a1,a2,…,a4(n−k)+2,记
N
=
(
n
−
k
)
N=(n-k)
N=(n−k),都可以按照下面的规律构造分组
{
1
,
N
+
1
,
2
N
+
1
,
3
N
+
1
3
,
N
+
3
,
2
N
+
3
,
3
N
+
3
4
,
N
+
4
,
2
N
+
4
,
3
N
+
4
⋮
N
+
2
,
2
N
+
2
,
3
N
+
2
,
4
N
+
2
\begin{aligned} \left\{ \begin{array}{ll} 1, N+1, 2N+1, 3N+1\\ 3, N+3, 2N+3, 3N+3\\ 4, N+4, 2N+4, 3N+4\\ \vdots \\ N+2, 2N+2, 3N+2, 4N+2 \end{array} \right. \end{aligned}
⎩
⎨
⎧1,N+1,2N+1,3N+13,N+3,2N+3,3N+34,N+4,2N+4,3N+4⋮N+2,2N+2,3N+2,4N+2
剩下的2段
a
1
a_1
a1 到
a
4
k
a_{4k}
a4k 和
a
4
n
+
3
a_{4n+3}
a4n+3到
a
4
m
+
2
a_{4m+2}
a4m+2是连续的,且恰好都可以整除4,每连续4个为一组即可。
因此 ( i = 4 k + 2 , j = 4 n + 1 , n > ( k + 1 ) ) (i=4k+2, j=4n+1, n > (k + 1)) (i=4k+2,j=4n+1,n>(k+1))也是可分数列。同样,概率估计约为 P i , j = 1 16 P_{i,j}=\frac{1}{16} Pi,j=161。
更精确的概率为:
P
i
,
j
=
m
(
m
−
1
)
/
2
C
4
m
+
2
2
P_{i,j} = \frac{m(m-1)/2}{C_{4m+2}^2}
Pi,j=C4m+22m(m−1)/2
因此
P
m
=
(
m
+
2
)
(
m
+
1
)
/
2
C
4
m
+
2
2
+
m
(
m
−
1
)
/
2
C
4
m
+
2
2
=
m
2
+
m
+
1
8
m
2
+
6
m
+
1
>
1
8
\begin{aligned} P_m &= \frac{(m+2)(m+1)/2}{C_{4m+2}^2} + \frac{m(m-1)/2}{C_{4m+2}^2} \\ &=\frac{m^2+m+1}{8m^2+6m+1} \\ & > \frac{1}{8} \end{aligned}
Pm=C4m+22(m+2)(m+1)/2+C4m+22m(m−1)/2=8m2+6m+1m2+m+1>81