一个同伦可扩展性的命题

一个同伦可扩展性的命题

证明过程来自于A.Hatcher《Algebraic Topolopy》,Appendix 第533页。

命题:拓扑空间偶 ( X , A ) (X,A) (X,A)具有同伦可扩展性当且仅当存在从 X × I X\times I X×I X × [ 0 , 1 ] ∪ A × I X \times [0,1]\cup A \times I X×[0,1]A×I的收缩映射。
证明:必要性显然,下证充分性。令 Y = X × [ 0 , 1 ] ∪ A × I Y=X \times [0,1]\cup A \times I Y=X×[0,1]A×I,且赋予 X × I X\times I X×I的子空间拓扑。假设存在收缩映射 r : X × I → Y r:X\times I\rightarrow Y r:X×IY,我们将要证明 O ⊂ Y O\subset Y OY是开集,如果 O O O X X X(看成 Y Y Y的子空间 X × { 0 } X\times \{0\} X×{0})和 A × I A \times I A×I的交集都是各自空间的开集。这就意味着 Y Y Y上的函数是连续的,如果它在 X X X A × I A\times I A×I上的限制都是连续的。把这个(任意的连续)函数用收缩映射做复合,就得到了所需要的定义在 X × I X\times I X×I上的连续函数。
为证 O ⊂ Y O\subset Y OY Y Y Y中开集,只需证对每一点 x ∈ O x\in O xO,存在一个包含 x x x的开集 V × W ⊂ X × I V\times W\subset X\times I V×WX×I使得 ( V × W ) ∩ Y ⊂ O (V\times W)\cap Y\subset O (V×W)YO(因为给 Y Y Y赋予了 X × I X\times I X×I的子空间拓扑)。若 x ∈ A × ( 0 , 1 ] x\in A\times (0,1] xA×(0,1]是显然的,所以不妨设 x ∈ X x\in X xX。又若 x x x不在 A A A的闭包 A ‾ \overline{A} A中时,结论也是显然的,所以设 x ∈ A ‾ x\in \overline{A} xA。对正整数 n ≥ 1 n\geq 1 n1,令 U n U_n Un X X X中使得 ( U n ∩ A ) × [ 0 , 1 / n ) ⊂ O (U_n\cap A)\times [0,1/n) \subset O (UnA)×[0,1/n)O的最大开集, U n U_n Un的存在性是由于一族满足上述性质的开集的并集还满足此性质(即给定一个 n n n,对应地就有一个 U n U_n Un)。令 U = ∪ n U n U=\cup_n U_n U=nUn。注意到 A ∩ U ⊂ O A\cap U\subset O AUO,我们只需说明 x ∈ U x\in U xU,因为此时存在 n n n使 x ∈ U n x\in U_n xUn,那么我们可以选 V × W = ( U n ∩ O ) × [ 0 , 1 / n ) V\times W=(U_n\cap O)\times [0,1/n) V×W=(UnO)×[0,1/n),此时 ( V × W ) ∩ Y = ( ( U n ∩ O ) × [ 0 , 1 / n ) ) ∩ Y ⊂ O (V\times W)\cap Y=((U_n\cap O)\times [0,1/n))\cap Y\subset O (V×W)Y=((UnO)×[0,1/n))YO,其中 U n ∩ O U_n\cap O UnO X X X中开集(因为 U n U_n Un X X X中开集), [ 0 , 1 / n ) [0,1/n) [0,1/n) I I I中开集。
为证 x ∈ U x\in U xU,首先固定 t > 0 t>0 t>0,考虑点 ( x , t ) (x,t) (x,t)。写 r ( x , t ) = ( r 1 ( x , t ) , r 2 ( x , t ) ) ∈ X × I r(x,t)=(r_1(x,t),r_2(x,t))\in X\times I r(x,t)=(r1(x,t),r2(x,t))X×I(别忘了 r r r是收缩映射),则由于 x ∈ A ‾ x\in \overline{A} xA r ( a , t ) = ( a , t ) r(a,t)=(a,t) r(a,t)=(a,t) ∀ a ∈ A \forall a\in A aA,我们有 r 2 ( x , t ) = t r_2(x,t)=t r2(x,t)=t。因此 r ( x , t ) ∈ X × { t } r(x,t)\in X\times \{t\} r(x,t)X×{t},所以 r 1 ( x , t ) ∈ A r_1(x,t)\in A r1(x,t)A。断言:若 r 1 ( x , t ) ∈ U n r_1(x,t)\in U_n r1(x,t)Un,则 x ∈ U n x\in U_n xUn
事实上,若 r 1 ( x , t ) ∈ U n r_1(x,t)\in U_n r1(x,t)Un,则由 r 1 r_1 r1的连续性,存在 X X X中点 x x x的一个开邻域 V V V ϵ > 0 \epsilon >0 ϵ>0使得 r 1 ( V × ( t − ϵ , t + ϵ ) ) ⊂ U n r_1(V\times (t-\epsilon,t+\epsilon))\subset U_n r1(V×(tϵ,t+ϵ))Un。特别地, r 1 ( ( V ∩ A ) × { t } ) ⊂ U n r_1((V\cap A) \times \{t\})\subset U_n r1((VA)×{t})Un,换句话说 V ∩ A ⊂ U n V\cap A \subset U_n VAUn。依照 U n U_n Un的定义, V ⊂ U n V\subset U_n VUn,从而 x ∈ U n x\in U_n xUn
现在反设 x x x不在 U U U中。由断言, r 1 ( x , t ) ∈ A − U r_1(x,t)\in A-U r1(x,t)AU(否则 r 1 ( x , t ) ∈ U r_1(x,t)\in U r1(x,t)U必属于某个 U n U_n Un,则 x ∈ U n ⊂ U x\in U_n\subset U xUnU矛盾)。既然 A ∩ O ⊂ U A\cap O\subset U AOU,更有 r 1 ( x , t ) ∈ A − O r_1(x,t)\in A-O r1(x,t)AO。这个关系对任意 t > 0 t>0 t>0都成立,令 t → 0 t\rightarrow 0 t0,由 r 1 r_1 r1是到 X X X的连续映射以及 X ∩ O X\cap O XO X X X中开集得到 r 1 ( x , 0 ) ∈ A ‾ − O r_1(x,0)\in \overline{A}-O r1(x,0)AO。而 r 1 ( x , 0 ) = x r_1(x,0)=x r1(x,0)=x,所以 x x x不在 O O O中,与 x x x的选取矛盾。从而 x ∈ U x\in U xU,证毕。
例:令 X = [ 0 , 1 ] , A = ( 0 , 1 ] , O = { ( x , t ) ∣ t < x 或 t = 0 } X=[0,1],A=(0,1],O=\{(x,t)|t<x或t=0\} X=[0,1],A=(0,1],O={(x,t)t<xt=0}。此时 O O O X X X A × I A\times I A×I的交都是各自子空间的开集,但 O O O自身不是开集。所以不存在从 X × I X\times I X×I X × { 0 } ∪ A × I X\times \{0\}\cup A\times I X×{0}A×I的收缩映射,从而 ( X , A ) (X,A) (X,A)没有同伦可扩展性。事实上,这个收缩映射也是不可能存在的,因为它必须把紧集映到紧集,而 X × { 0 } ∪ A × I X\times \{0\}\cup A\times I X×{0}A×I不是紧的。

  • 27
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值