/*
HDU 3579
不一定互质情况,神牛公式解析链接:http://yzmduncan.iteye.com/blog/1323599
把推导过程翻译成代码即可...
*/
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){
if(b==0) return a;
return gcd(b,a%b);
}
ll kzgcd(ll a,ll b,ll&x,ll&y){
if(b==0) {
x=1, y=0;
return a;
}
ll d = kzgcd(b,a%b,x,y);
ll k = y;
y = x - a/b*y;
x = k;
return d;
}
ll inv(ll a,ll b){ /// 求 a 的逆元 整数最小x
ll x,y;
ll k = kzgcd(a,b,x,y);
if(k!=1) return -1;
return (x%b+b)%b;
}
bool merge(ll a1,ll n1,ll&a2,ll&n2){
ll d = gcd(n1,n2);
ll c = a2 - a1;
if(c%d) return false;
ll k = inv(n1/d,n2/d)*c/d;
ll a,n;
n = n1/d*n2;
a = (n1*k+a1)%(n1*n2/d);
a2 = a;
n2 = n;
return true;
}
ll china_reminder(ll k,ll*a,ll*b){ /// 余数,mod数
ll n1=b[1],a1=a[1];
for(ll i=2;i<=k;i++){
ll nn,aa;
nn = b[i], aa = a[i];
if(!merge(a1,n1,aa,nn))
return -1;
n1 = nn;
a1 = aa;
}
return (a1%n1+n1)%n1;
}
int main(){
ll t,a[1110],b[1100];
int f;
cin>>f;
for(int ca=1;ca<=f;ca++){
cin>>t;
for(ll i=1;i<=t;i++)
cin>>b[i];
for(ll i=1;i<=t;i++)
cin>>a[i];
printf("Case %d: ",ca);
ll sum = china_reminder(t,a,b);
if(!sum){ /// 特判...
sum=1;
for(int i=1;i<=t;i++)
sum = sum*b[i]/gcd(sum,b[i]);
}
printf("%lld\n",sum);
}
}
HDU 3579 模余方程
最新推荐文章于 2018-11-01 16:55:27 发布