HDU 3579 模余方程

/*
HDU 3579
不一定互质情况,神牛公式解析链接:http://yzmduncan.iteye.com/blog/1323599
把推导过程翻译成代码即可... 

*/

#include<iostream> #include<cstdio> #include<cmath> using namespace std; typedef long long ll;

ll gcd(ll a,ll b){     if(b==0) return a;     return gcd(b,a%b); }

ll kzgcd(ll a,ll b,ll&x,ll&y){     if(b==0) {         x=1, y=0;         return a;     }     ll d = kzgcd(b,a%b,x,y);     ll k = y;     y = x - a/b*y;     x = k;     return d; }

ll inv(ll a,ll b){ /// 求 a 的逆元 整数最小x     ll x,y;     ll k = kzgcd(a,b,x,y);     if(k!=1) return -1;     return (x%b+b)%b; }

bool merge(ll a1,ll n1,ll&a2,ll&n2){     ll d = gcd(n1,n2);     ll c = a2 - a1;     if(c%d) return false;     ll k = inv(n1/d,n2/d)*c/d;     ll a,n;     n = n1/d*n2;     a = (n1*k+a1)%(n1*n2/d);     a2 = a;     n2 = n;     return true; }

ll china_reminder(ll k,ll*a,ll*b){ /// 余数,mod数     ll n1=b[1],a1=a[1];     for(ll i=2;i<=k;i++){         ll nn,aa;         nn = b[i], aa = a[i];         if(!merge(a1,n1,aa,nn))             return -1;         n1 = nn;         a1 = aa;     }     return (a1%n1+n1)%n1; }

int main(){      ll t,a[1110],b[1100];      int f;      cin>>f;      for(int ca=1;ca<=f;ca++){          cin>>t;          for(ll i=1;i<=t;i++)              cin>>b[i];          for(ll i=1;i<=t;i++)              cin>>a[i];          printf("Case %d: ",ca);          ll sum = china_reminder(t,a,b);          if(!sum){ /// 特判...              sum=1;              for(int i=1;i<=t;i++)                  sum = sum*b[i]/gcd(sum,b[i]);          }          printf("%lld\n",sum);      } }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值