HDU 3049 求逆元模板

密码学里面的逆元是什么意思?详细点,别抄百度百科里面的!

问题补充:

还有11的负一次方等于19是怎么回事?
满意回答
2011-04-11 00:10
逆元是模运算中的一个概念,我们通常说A是B模C的逆元,实际上是指AB=1 (mod C)
也就是说A与B的乘积模C的余数为1。可表示为A=B^(-1) mod C。逆元是积性函数,
       补充:假定A与B不是互逆,A*B = K(mod C)==> A = B^(-1)*K( mod C ) 
即 inv[ab] =inv[a]*inv[b];打个比方,7模11的逆元,即:7^(-1)mod 11=8,
这是因为7×8=5×11+1,所以说7模11的逆元是8。
另外补充问题中应该还缺一个模数,即上式中的C,意思是:11×19=k×C+1,这里的k为某一个正整数。

上式  A*B = 1 (mod C) ;
 所以可以写成 A*B + C*Y = 1; 已知A和C,要你求A mod C的逆元 B, 可以转化求解一元一次不定方程
 求解...逆元 B = (B%C + C)% C (小于C的正整数)

题意:要你求  累加和  与  n mod 1000003逆元  的乘积
#include<iostream>
#include<cmath>
using namespace std;
#define manx 40009
#define mod 1000003
int a[manx];
void init(){
    a[0]=1, a[1]=2;
    for(int i=2;i<manx;i++){
        a[i]=( a[i-1] + a[i-1] ) % 1000003;
    }
}
  扩展欧几里德求 a mod m的逆元模板 
int Ext_gcd(int a,int b,int &x,int &y){
    if(b==0) { x=1, y=0; return a; }
    int d= Ext_gcd(b,a%b,y,x);
    y-= a/b*x;
    return d;
}    
int Inv(int a,int m){
    int d,x,y;
    d= Ext_gcd(a,(int)m,x,y);
    if(d==1) return (x%m+m)%m;
    return -1;
}     
/// 
int main(){
    int t,n,x,tt;
    scanf("%d",&t);
    init();
    for(int tt=1;tt<=t;tt++){
        scanf("%d",&n);
        __int64 sum=0;
        for(int i=1;i<=n;i++){
            scanf("%d",&x);
            sum =( sum + a[x] )% mod;
        }
        int ni=Inv(n,mod);  /// 求 n 的逆元
        sum =( sum*ni )%mod;
        if(sum<0) sum += mod;
        printf("Case %d:%d\n",tt,sum);
    }
}
 
 
另外一个代码
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
#define manx 40009
#define mod 1000003
int __pow(__int64 a,int n){ ///  求 a^n%mod 的解 
    if(n==0) return 1;
    __int64 b=1;  ///  没有考虑越界,蛋疼,WA了几回
    while(n>1){  /// 这段代码好的难以解释,二分的思想,自己慢慢体会吧 
        if(n%2==0){
            a = a*a%mod;
            n /= 2;
        }
        else {
            b = b*a%mod;
            n--;
        }
    }
    return a*b%mod;
}
  扩展欧几里德求 a mod m的逆元模板 
int Ext_gcd(int a,int b,int &x,int &y){
    if(b==0) { x=1, y=0; return a; }
    int d= Ext_gcd(b,a%b,y,x);
    y-= a/b*x;
    return d;
}    
int Inv(int a,int m){
    int d,x,y;
    d= Ext_gcd(a,(int)m,x,y);
    if(d==1) return (x%m+m)%m;
    return -1;
}     
/// 
int main(){
    int t,n,x,tt;
    scanf("%d",&t);
    for(int tt=1;tt<=t;tt++){
        scanf("%d",&n);
        __int64 sum=0;
        for(int i=1;i<=n;i++){
            scanf("%d",&x);
            sum =( sum + __pow(2,x) )% mod;
        }
        int ni=Inv(n,mod);
        sum =( sum*ni )%mod;
        if(sum<0) sum += mod;
        printf("Case %d:%d\n",tt,sum);
    }
}
 
 
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值