密码学里面的逆元是什么意思?详细点,别抄百度百科里面的!
问题补充:
还有11的负一次方等于19是怎么回事?
满意回答
2011-04-11 00:10
逆元是模运算中的一个概念,我们通常说A是B模C的逆元,实际上是指AB=1 (mod C),
也就是说A与B的乘积模C的余数为1。可表示为A=B^(-1) mod C。逆元是积性函数,
补充:假定A与B不是互逆,A*B = K(mod C)==> A = B^(-1)*K( mod C )
即 inv[ab] =inv[a]*inv[b];打个比方,7模11的逆元,即:7^(-1)mod 11=8,
这是因为7×8=5×11+1,所以说7模11的逆元是8。
另外补充问题中应该还缺一个模数,即上式中的C,意思是:11×19=k×C+1,这里的k为某一个正整数。
上式 A*B = 1 (mod C) ;
所以可以写成 A*B + C*Y = 1; 已知A和C,要你求A mod C的逆元 B, 可以转化求解一元一次不定方程
求解...逆元 B = (B%C + C)% C (小于C的正整数)
题意:要你求 累加和 与 n mod 1000003逆元 的乘积
#include<iostream>
#include<cmath>
using namespace std;
#define manx 40009
#define mod 1000003
int a[manx];
void init(){
a[0]=1, a[1]=2;
for(int i=2;i<manx;i++){
a[i]=( a[i-1] + a[i-1] ) % 1000003;
}
}
扩展欧几里德求 a mod m的逆元模板
int Ext_gcd(int a,int b,int &x,int &y){
if(b==0) { x=1, y=0; return a; }
int d= Ext_gcd(b,a%b,y,x);
y-= a/b*x;
return d;
}
int Inv(int a,int m){
int d,x,y;
d= Ext_gcd(a,(int)m,x,y);
if(d==1) return (x%m+m)%m;
return -1;
}
///
int main(){
int t,n,x,tt;
scanf("%d",&t);
init();
for(int tt=1;tt<=t;tt++){
scanf("%d",&n);
__int64 sum=0;
for(int i=1;i<=n;i++){
scanf("%d",&x);
sum =( sum + a[x] )% mod;
}
int ni=Inv(n,mod); /// 求 n 的逆元
sum =( sum*ni )%mod;
if(sum<0) sum += mod;
printf("Case %d:%d\n",tt,sum);
}
}
另外一个代码
#include<iostream> #include<cmath> #include<algorithm> using namespace std; #define manx 40009 #define mod 1000003 int __pow(__int64 a,int n){ /// 求 a^n%mod 的解 if(n==0) return 1; __int64 b=1; /// 没有考虑越界,蛋疼,WA了几回 while(n>1){ /// 这段代码好的难以解释,二分的思想,自己慢慢体会吧 if(n%2==0){ a = a*a%mod; n /= 2; } else { b = b*a%mod; n--; } } return a*b%mod; } 扩展欧几里德求 a mod m的逆元模板 int Ext_gcd(int a,int b,int &x,int &y){ if(b==0) { x=1, y=0; return a; } int d= Ext_gcd(b,a%b,y,x); y-= a/b*x; return d; } int Inv(int a,int m){ int d,x,y; d= Ext_gcd(a,(int)m,x,y); if(d==1) return (x%m+m)%m; return -1; } /// int main(){ int t,n,x,tt; scanf("%d",&t); for(int tt=1;tt<=t;tt++){ scanf("%d",&n); __int64 sum=0; for(int i=1;i<=n;i++){ scanf("%d",&x);
sum =( sum + __pow(2,x) )% mod; } int ni=Inv(n,mod); sum =( sum*ni )%mod; if(sum<0) sum += mod; printf("Case %d:%d\n",tt,sum); } }