把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如,数组 [3,4,5,1,2] 为 [1,2,3,4,5] 的一个旋转,该数组的最小值为1。
示例 1:
输入:[3,4,5,1,2]
输出:1
示例 2:
输入:[2,2,2,0,1]
输出:
两种思路:
O(n)
复杂度:遍历一遍,寻找降序点,输出降序点值,如果找不到,输出列表的首元素O(logn)
复杂度:二分查找,注意分治方法,必须保证每次的规模都是减小的,而且要注意最后输出的是值而不是转折点的索引
# 第一种思路
def min_ele(nums):
for i in range(1, len(nums)):
if nums[i - 1] > nums[i]:
return nums[i]
return nums[0]
# 第二种思路
def min_element(nums):
i = 0
j = len(nums) - 1
while i < j:
mid = (i + j) // 2 # 左二分点,必有i <= mid < j
if nums[mid] < nums[j]:
j = mid
elif nums[mid] > nums[j]:
i = mid + 1 # 必须是mid + 1, 不能是mid,保证规模减小
else:
j -= 1 # 分析见后文
return nums[i]
关于nums[mid] == nums[j]
的分析:
- 如果
mid
在左序列,则nums
在[i, mid]
和j
上的值都是相等的。进一步,若j
不是旋转点,则旋转点在[i, j - 1]
中。若j
是旋转点,则[i, j - 1]
为递增序列,继续走下去会输出序列首,并且序列首的值和旋转点的值相等。 - 如果
mid
在右序列,则旋转点在[i, mid]
而mid < j
,从而在[i, j - 1]
中。
实现代码中的问题:
- 二分法三点:改变左右索引,保证规模减小,并且最终值在区间中。
- 通常使用
while i < j
的模式实现。如果用递归写,也可以,但是比较麻烦,逻辑上也不好处理变化。 - 比较时使用起点或者终点作为基准点,而不是中间点周围的点如
mid + 1
, 那样会把问题搞复杂。 - 对于
nums[mid] == nums[j]
的讨论具有技巧,注意把握。