整数的故事
整数,大家再熟悉不过的东西。可是,一旦考虑上面的运算,事情就没有单纯了。整数的运算性质一直是数论的核心兴趣所在。素数,不定方程都是在运算的基础上进行考虑的。高斯的时代,人们考虑用多项式表达整数,比如 x 2 + y 2 = n x^2+y^2=n x2+y2=n,当 n n n为何值时,这个方程有整数解,解集又是什么。如果继续解方程和因式分解是一回事的思想,考虑将左边进行分解 x 2 + y 2 = ( x + i y ) ( x − i y ) x^2+y^2=(x+iy)(x-iy) x2+y2=(x+iy)(x−iy),高斯引入高斯整数环 Z [ i ] \mathbb{Z}[i] Z[i],这样问题从 Z \mathbb{Z} Z转移到了 Z [ i ] \mathbb{Z}[i] Z[i]。如果我们探讨清楚了 Z [ i ] \mathbb{Z}[i] Z[i]的分解性质,方程就容易解了。
继续思考,我们引入 i i i,是因为 i i i是 x 2 + 1 = 0 x^2+1=0 x2+1=0的根。我们考察一般的方程 x n + a n − 1 x n − 1 + ⋯ + a 0 = 0 x^n+a_{n-1}x^{n-1}+\cdots+a_0=0 xn+an−1xn−1+⋯+a0=0,注意这里我们的首项系数是1,如果不是1的话,就势必要引入除法,就无法继续在整数的范围内考虑问题了。我们称这种方程的根为代数整数。在整数中加入代数整数,得到新的环,分析新环的唯一因子分解性质,有助于我们解不定方程。
Noether正规化引理
在研究域的扩张时,我们知道对于域的有限生成扩张 E / F E/F E/F,我们可以找到 F F F上代数无关的元素 x 1 , ⋯ , x n x_1,\cdots,x_n x1,⋯,xn使得 E / F ( x 1 , ⋯ , x n ) E/F(x_1,\cdots,x_n) E/F(x1,⋯,xn)为代数扩张。
如果想把域的这个结果移到环上面,就是这样子的:对于环的有限生成扩张 R / S R/S R/S,我们可以找到 S S S上代数无关的元素 x 1 , ⋯ , x n x_1,\cdots,x_n x1,⋯,xn使得 R / S [ x 1 , ⋯ , x n ] R/S[x_1,\cdots,x_n] R/S[x1,⋯,xn]为代数扩张。
如果我们想把代数扩张的结论加强为整扩张,就需要 S = k S=k S=k为域。此时我们得到所谓的Noether正规化引理。
零点定理弱形式
首先我们看看什么是零点定理的弱形式。设 k k k为域, R R R为有限生成 k k k代数,如果 R R R为域,则 R R R为 k k k的代数扩域。
利用Noether正规化引理,得到
k ↪ k [ t 1 , ⋯ , t n ] ↪ R k\hookrightarrow k[t_1,\cdots,t_n]\hookrightarrow R k↪k[t1,⋯,tn]↪R
中间的代数为多项式环,后面的这个扩张为整扩张。
下面就是整扩张发挥作用的地方了。整扩张具有保持良好性质的能力。设 R / S R/S R/S为整环之间的整扩张, R R R为域当且仅当 S S S为域。事实上,如果 S S S为域,任意 x ∈ R − S x\in R-S x∈R−S,因为 R R R为整环,存在方程
x n + a n − 1 x n − 1 + ⋯ + a 0 = 0 , a 0 ≠ 0 x^n+a_{n-1}x^{n-1}+\cdots+a_0=0,a_0\neq 0 xn+an−1xn−1+⋯+a0=0,a0=0
于是 x ( − a 0 − 1 ) ( x n − 1 + a n − 1 x n − 2 + ⋯ + a 1 ) = 1 x(-a_0^{-1})(x^{n-1}+a_{n-1}x^{n-2}+\cdots + a_1)=1 x(−a0−1)(xn−1+an−1xn−2+⋯+a1)=1。
反过来,如果
R
R
R为域,任意
x
∈
S
−
{
0
}
x\in S-\{0\}
x∈S−{0},
x
−
1
∈
R
x^{-1}\in R
x−1∈R在
S
S
S上整,于是
x
−
n
+
a
n
−
1
x
−
n
+
1
+
⋯
+
a
0
=
0
,
a
0
≠
0
x^{-n}+a_{n-1}x^{-n+1}+\cdots+a_0=0,a_0\neq 0
x−n+an−1x−n+1+⋯+a0=0,a0=0
于是
x
−
1
+
a
n
−
1
x
+
⋯
+
a
0
x
n
−
1
=
0
x^{-1}+a_{n-1}x+\cdots+a_0x^{n-1}=0
x−1+an−1x+⋯+a0xn−1=0,
x
−
1
∈
S
x^{-1}\in S
x−1∈S。
利用这个结果,我们有 k [ t 1 , ⋯ , t n ] k[t_1,\cdots,t_n] k[t1,⋯,tn]为域,因此 k [ t 1 , ⋯ , t n ] = k k[t_1,\cdots,t_n]=k k[t1,⋯,tn]=k,从而 R R R为 k k k的代数扩域。
下面我们来说一下为什么这个定理称为是零点定理的弱形式。
R
=
k
[
x
1
,
⋯
,
x
n
]
R=k[x_1,\cdots,x_n]
R=k[x1,⋯,xn],如果
R
R
R为域,则
k
k
k代数同态:
ϕ
:
k
[
t
1
,
⋯
,
t
n
]
→
R
:
t
i
↦
x
i
\phi:k[t_1,\cdots,t_n]\rightarrow R: t_i\mapsto x_i
ϕ:k[t1,⋯,tn]→R:ti↦xi
的核为极大理想。而上面的结论说明 x i x_i xi是 k k k上的代数元,因而存在 f i ∈ k [ t ] f_i\in k[t] fi∈k[t]使得 f i ( x i ) = 0 f_i(x_i)=0 fi(xi)=0,因而 f i ( t i ) ∈ K e r ϕ f_i(t_i)\in Ker\ \phi fi(ti)∈Ker ϕ。考虑多项式环 S = k [ t 1 , ⋯ , t n ] S=k[t_1,\cdots,t_n] S=k[t1,⋯,tn]的任意极大理想 m m m,令 R = S / m R=S/m R=S/m,则 m = K e r ϕ m=Ker\ \phi m=Ker ϕ。由此,我们可以得知多项式环 k [ t 1 , ⋯ , t n ] k[t_1,\cdots,t_n] k[t1,⋯,tn]的任意极大理想中包含有 k [ t i ] k[t_i] k[ti]中的非零元素。
如果
k
k
k为代数闭域,
f
i
(
t
i
)
f_i(t_i)
fi(ti)必然还可以取成不可约多项式
t
i
−
a
i
t_i-a_i
ti−ai,因而
m
⊃
(
x
1
−
a
1
,
⋯
,
x
n
−
a
n
)
m\supset (x_1-a_1,\cdots,x_n-a_n)
m⊃(x1−a1,⋯,xn−an),另一方面,通过替换变量知道
(
x
1
−
a
1
,
⋯
,
x
n
−
a
n
)
(x_1-a_1,\cdots,x_n-a_n)
(x1−a1,⋯,xn−an)为极大理想,从而
k
[
t
1
,
⋯
,
t
n
]
k[t_1,\cdots,t_n]
k[t1,⋯,tn]的极大理想形如
(
x
1
−
a
1
,
⋯
,
x
n
−
a
n
)
(x_1-a_1,\cdots,x_n-a_n)
(x1−a1,⋯,xn−an)。
有了这个弱形式,我们来看Hilbert零点定理。设 k k k为代数闭域, I ⊲ k [ t 1 , ⋯ , t n ] I\lhd k[t_1,\cdots,t_n] I⊲k[t1,⋯,tn],则 I ( V ( I ) ) = I I(V(I))=\sqrt I I(V(I))=I,也就是说仿射簇的零化多项式都在根理想中。
设
I
=
(
f
1
,
⋯
,
f
m
)
I=(f_1,\cdots,f_m)
I=(f1,⋯,fm),
f
f
f为零化多项式,则
V
(
f
1
,
⋯
,
f
m
,
1
−
T
f
)
=
∅
⊂
k
n
+
1
V(f_1,\cdots,f_m,1-Tf)=\empty\subset k^{n+1}
V(f1,⋯,fm,1−Tf)=∅⊂kn+1。根据上面关于极大理想的形式,我们知道必然有
(
f
1
,
⋯
,
f
m
,
1
−
T
f
)
=
k
[
t
1
,
⋯
,
t
n
,
T
]
(f_1,\cdots,f_m,1-Tf)=k[t_1,\cdots,t_n,T]
(f1,⋯,fm,1−Tf)=k[t1,⋯,tn,T],从而
a
1
(
t
,
T
)
f
1
+
⋯
+
a
m
(
t
,
T
)
f
m
+
a
(
t
,
T
)
(
1
−
T
f
)
=
1
a_1(t,T)f_1+\cdots+a_m(t,T)f_m+a(t,T)(1-Tf)=1
a1(t,T)f1+⋯+am(t,T)fm+a(t,T)(1−Tf)=1
取 T = 1 f T=\frac{1}{f} T=f1,于是 f r ∈ ( f 1 , ⋯ , f m ) f^r\in (f_1,\cdots,f_m) fr∈(f1,⋯,fm),即 f ∈ I f\in \sqrt{I} f∈I。