复现zeronvs全过程

下载源代码文件

https://github.com/kylesargent/zeronvs.git

分为windows下配置环境与ubuntu下配置环境,windows下可参考下面一些资料

以下为ubuntu下的配置

简述前置步骤:安装系统18.04(制作启动盘,分配空间,安装),安装显卡驱动(推:官网run),安装aconda

打开终端,根据readme配置环境

接下来一步先装ninja,后手动下载源代码文件https://github.com/NVlabs/tiny-cuda-nn

其中binding/torch下的setup.py文件中需要修改为

其中有两个包需要手动下载,fmt及cutlass,下载后放到dependencies中

随后再bindings/torch下python setup.py install

编译过程的报错可在最下的参考中寻找,比如建立软连接以及gcc版本过老。

继续readme中的requirements-zeronvs的包配置,需要注意如clip之类需要先git的包可以先手动下载源代码,再python setup.py install --user

Zeronvs_diffusion是作者另一个项目库,需要重新下载,将代码代替zeronvs下的空白文件夹,两步git操作可省略,安装该库。

跑的是测试文件,bash launch_inference.sh查看其中代码需要下载相关权重

Zeronvs.ckpt :https://drive.google.com/file/d/17WEMfs2HABJcdf4JmuIM3ti0uz37lSZg/view?usp=sharing

高达14.4G(并需要梯子),如果网络一次性下载不下来,上csdn,b站,知乎寻求帮助,最后csdn好心人给出权重文件(我这有)。

修改config里的设置,调小输出像素,防爆显存并成功运行。

附上我提问官方给的3090爆显存调法

参考文献

【已顺利训练】Windows踩坑记录

https://github.com/hukaixuan19970627/yolov5_obb/issues/440

Q & A

Windows 安装 tiny-cuda-nn, Nerf Studio

https://zhuanlan.zhihu.com/p/655609704

安装步骤

【深度学习】【三维重建】windows11环境配置tiny-cuda-nn详细教程

https://blog.csdn.net/yangyu0515/article/details/131959907

Tiny-cudnn官方GitHub

https://github.com/NVlabs/tiny-cuda-nn

nerfstudio搭建 win11踩坑记录之tinycudann

https://blog.csdn.net/qq_41295301/article/details/131833662?spm=1001.2014.3001.5502

有vs的启动路径介绍

win10+tiny-cuda-nn踩坑记录

https://blog.csdn.net/weixin_42323641/article/details/133821659?spm=1001.2014.3001.5502

有vs启动路径介绍

tiny-cuda-nn编译安装

https://zhuanlan.zhihu.com/p/663073021

有缺包解释

[Tools: tiny-cuda-nn] Linux安装

https://blog.csdn.net/qq_40731332/article/details/131922562?spm=1001.2014.3001.5502

tiny-cuda-nn环境配置

https://zhuanlan.zhihu.com/p/657365860

Ubuntu下的安装

pip install git(pip直接安装git上的项目)

https://blog.csdn.net/Castlehe/article/details/119532679

有用的知识:

Cd demo

Python setup.py install --user

SLAM 学习过程中,Eigen报错: fatal error: Eigen/Core: No such file or directory

https://blog.csdn.net/qq_44164791/article/details/130971625

有建立软连接教学

fatal error: filesystem: 没有那个文件或目录

https://blog.csdn.net/weixin_45867382/article/details/130930112

有一个报错是gcc版本低了,需要换8的版本

要开始复现mmskeleton的过程,请按照以下步骤进行操作: 1. 确保你的系统已经安装了Python和pip。如果没有,请先安装它们。 2. 克隆mmskeleton的代码仓库。你可以在GitHub上找到mmskeleton的代码仓库,并使用以下命令克隆代码: ``` git clone https://github.com/open-mmlab/mmskeleton.git ``` 3. 进入克隆的代码仓库目录。 ``` cd mmskeleton ``` 4. 创建并激活一个虚拟环境(可选,但强烈推荐)。 5. 安装依赖项。可以使用以下命令安装必要的依赖项: ``` pip install -r requirements.txt ``` 6. 安装mmskeleton。可以使用以下命令安装mmskeleton: ``` python setup.py install ``` 7. 下载预训练模型。mmskeleton需要一些预训练模型来进行姿态估计等任务。你可以在mmskeleton的文档或代码仓库中找到相应的模型下载链接。下载并解压这些模型,并将它们放置在适当的目录中。 8. 准备数据。根据你的任务和数据集,准备好相应的数据。确保数据的路径与配置文件中指定的路径相匹配。 9. 配置文件设置。在`./configs/pose_estimation/`目录下,你可以找到一些已经配置好的示例配置文件。根据你的需求修改其中的一份配置文件,确保路径和参数设置正确。 10. 运行示例。使用以下命令来运行mmskeleton的示例: ``` python mmskl.py --config ./configs/pose_estimation/pose_demo.yaml ``` 这将使用指定的配置文件运行mmskeleton的姿态估计示例。根据你的配置文件和数据集,你可能需要进行相应的修改。 这些是复现mmskeleton的基本步骤。根据你的具体需求和任务,可能还需要进行其他设置和修改。请参考mmskeleton的文档和代码仓库以获取更详细的信息和指导。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值