用大语言模型写微信小游戏自动脚本-向僵尸开炮

省流:开源代码:https://gitee.com/aiyzs/practice/blob/master/auto.py

首先基础的python环境要会

然后分析刷关需求,只是要消耗体力打最低级的关卡,不需要智能化选技能。

因此要有一个自动点击选技能的功能。

1、先给模型洗脑


2、输入需求


先装库


然后返回代码

import pyautogui

import time

# 获取鼠标当前位置

current_position = pyautogui.position()

print(f"当前鼠标位置: {current_position}")

# 存储位置以便稍后使用

stored_position = current_position

# 假设你需要做一些其他的事情,然后想要回到之前的位置并点击

# ...

# 你的代码逻辑

# ...

# 移动鼠标到之前存储的位置

pyautogui.moveTo(stored_position.x, stored_position.y, duration=0.25)  # duration参数表示移动过程的持续时间,单位是秒

# 点击鼠标左键

pyautogui.click()

# 为了看到效果,你可以让程序暂停一段时间

time.sleep(5)

2、自我调整

加入import keyboard库,设定按下q时再去获取鼠标位置。if keyboard.is_pressed("Q"):

3、需要在每一次关卡结束后进行一轮返回与重新开始的结算,采用模板匹配的方式进行。


截取目标图片作为模板匹配对象

两种思路,一种是多线程的方式进行中断,一种是每次进行点击操作前进行一轮匹配。为方便首先进行第二种思路。

2、模板匹配开始和返回


import CV2

import numpy as np

import pyautogui

import time

# 加载模板图片  

template = CV2.imread('template.png', 0)  # 假设模板图片名为template.png,且为灰度图  

w, h = template.shape[::-1]

# 捕获屏幕截图  

screenshot = np.array(pyautogui.screenshot())

screenshot_gray = CV2.cvtColor(screenshot, CV2.COLOR_BGR2GRAY)

# 应用模板匹配  

res = CV2.matchTemplate(screenshot_gray, template, CV2.TM_CCOEFF_NORMED)

threshold = 0.8  # 设置匹配阈值  

loc = np.where(res >= threshold)

# 找到最佳匹配位置  

best_match = None

max_val = threshold - 1

for pt in zip(*loc[::-1]):

    if res[pt] > max_val:

        max_val = res[pt]

        best_match = pt

    # 如果找到了匹配项,则移动鼠标并点击  

if best_match is not None:

    x, y = best_match

    # 计算鼠标点击位置,需要加上模板图片一半的大小以点击匹配区域的中心  

    click_x, click_y = x + w // 2, y + h // 2

    # 移动鼠标到目标位置  

    pyautogui.moveTo(click_x, click_y, duration=0.25)

    # 点击鼠标左键  

    pyautogui.click()

    print(f"Clicked at position: ({click_x}, {click_y})")

else:

    print("No match found.")

# 等待一段时间以便观察结果  

time.sleep(5) 作者:技术叆 https://www.bilibili.com/read/cv33640948/?spm_id_from=333.999.0.0 出处:bilibili

<think>好的,我需要帮助用户解决关于使用按键精灵编游戏自动脚本,特别是针对僵尸攻击的问题。首先,我得了解按键精灵的基本功能,它主要用于模拟键盘和鼠标操作,可以录制和回放动作,适合自动化重复任务。 用户提到游戏中的僵尸攻击,可能需要自动瞄准或检测敌人。不过,按键精灵本身没有图像识别功能,可能需要结合其他工具,比如Airtest,它支持图像识别和脚本录制,适合游戏自动化。引用[2]提到Airtest可以用于自动执行日常任务,甚至全自动游玩,这可能更适合用户的需求。 接下来,我应该分步骤说明如何使用按键精灵和Airtest。对于按键精灵,基本的步骤包括打开脚本编辑器、录制鼠标点击位置、设置循环。但需要提醒用户,这种方法依赖固定坐标,如果僵尸位置变化可能失效。 然后介绍Airtest,说明如何安装、编图像识别脚本,并设置循环检测。这里需要强调图像识别的优势,比如自动寻找目标,更灵活。同时,注意游戏规则,避免作弊风险。 最后,总结两种方法的优缺点,建议根据具体情况选择,并提醒用户遵守游戏规则。可能还需要检查是否有其他注意事项,比如延迟设置、错误处理等,确保脚本稳定运行。</think>关于使用按键精灵实现游戏自动化攻击僵尸脚本,以下是分步骤的解决方案: ### 一、按键精灵基础原理 按键精灵通过模拟键盘鼠标操作实现自动化[^2],主要功能包括: 1. 坐标记录:$ (x,y) $ 坐标定位 2. 动作录制:点击/移动的毫秒级记录 3. 循环控制:条件判断与重复执行 ### 二、实现攻击脚本的步骤 #### 方法1:固定坐标点击(适用于固定位置目标) ```vb Rem 开始 Delay 1000 //等待1秒 MoveTo 500,300 //移动鼠标到游戏窗口坐标 LeftClick 1 //单击攻击 Delay 2000 //攻击间隔 Goto 开始 ``` #### 方法2:图像识别方案(推荐,需配合Airtest) 1. 安装AirtestIDE并连接游戏窗口 2. 编识别代码: ```python from airtest.core.api import * auto_setup(__file__) while True: if exists(Template(r"zombie.png")): # 加载僵尸特征图 touch(target_pos) # 点击目标位置 keyevent("space") # 触发攻击按键 sleep(3) # 检测间隔 ``` ### 三、关键参数优化建议 1. 检测频率:$ t = \frac{1}{f} $ 建议设置2-3秒间隔 2. 容错机制:添加异常处理防止脚本中断 3. 多目标处理:通过循环遍历识别结果 $$ \text{攻击效率} = \frac{\text{有效点击次数}}{\text{总操作次数}} \times 100\% $$ ### 四、注意事项 1. 不同游戏分辨率需重新校准坐标 2. 部分反作弊系统会检测自动化工具 3. 建议在单机游戏中使用(如用户自制的植物大战僵尸改版[^1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值