Java:堆(优先级队列)

一、堆的相关概念

1、堆的定义
如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

2、堆的性质
1、堆中某个节点的值总是不大于或不小于其父节点的值。
2、堆总是一棵完全二叉树。

3、堆的存储方式
堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储。
注意: 对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。

4、堆的向下调整
注意: 在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。
时间复杂度分析:
最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(log2(n))

//以大堆为例
public void adjustDown(int root,int len) {
        int parent = root;
        int child = 2*parent+1;
        while (child < len){
            //0、判断是否有左右孩子  有的话 找到最大值 C下标表示最大值下标
            if (child+1 < len){
                child = this.elem[child] > this.elem[child+1] ? child : child+1;
            }
            //代码指向到这里,c表示最大值下标
            if (this.elem[child] > this.elem[parent]){
                //交换
                int tmp = this.elem[child];
                this.elem[child] = this.elem[parent];
                this.elem[parent] = tmp;

                parent = child;
                child = 2*parent+1;
            }else {
                break;
            }
        }
    }

5、堆的创建

public void createHeap(int[] array) {
        for (int i = 0; i < array.length; i++) {
            this.elem[i] = array[i];
            this.usedSize++;
        }
        //i:每棵子树的根节点下标
        for (int i = (this.usedSize-1-1)/2; i >= 0 ; i--) {
            adjustDown(i,this.usedSize);
        }
    }

6、堆的插入和删除
插入:

//放入val元素
    public void push(int val) {
        //0、堆是否是满的--》扩容
        if (isFull()){
            this.elem = Arrays.copyOf(this.elem,2*this.elem.length);
        }
        //1、放到数组的最后一个位置
        int index = this.usedSize;
        this.elem[index] = val;
        usedSize++;
        //2、进行调整
        adjustUp(this.usedSize-1);
    }

删除:

 public void pop(){
        //是否是空的
        if (isEmpty()) return;
        //最后一个元素和栈顶元素交换
        int tmp = this.elem[0];
        this.elem[0] = this.elem[usedSize-1];
        this.elem[usedSize-1] = tmp;
        this.usedSize--;
        //调整0号下标的这棵树
        adjustDown(0,usedSize-1);
    }

7、堆的应用
top-k问题: 找前k个最大的,要建立k个大小的堆。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值