【组合导航】基于卡尔曼滤波实现IMM-GNSS- UWB -INS子模型切换算法组合导航Matlab仿真

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

组合导航系统因其高精度、高可靠性和高自主性在复杂环境下具有广泛应用前景。针对单一导航系统在特定场景下的不足,本文深入探讨了基于卡尔曼滤波框架的多源信息融合方法,重点研究了交互式多模型(IMM)算法在GNSS、UWB、INS三种导航子系统间切换的应用。该方案利用IMM算法动态估计系统状态并切换子模型,实现了在不同环境条件下对最优导航解的自适应选择,从而提高了组合导航系统的整体性能。论文详细阐述了IMM-GNSS-UWB-INS组合导航系统的数学模型、卡尔曼滤波过程以及模型切换策略,并通过仿真实验验证了所提出方法的有效性和优越性。结果表明,所提出的IMM子模型切换算法能够有效克服单一导航系统在特定环境下的局限性,显著提升了组合导航系统的精度和鲁棒性。

关键词: 组合导航,卡尔曼滤波,交互式多模型,GNSS,UWB,INS,子模型切换

1. 引言

在现代社会,导航定位技术已成为诸多领域不可或缺的关键支撑。然而,单一导航系统往往存在固有的局限性。例如,全球导航卫星系统(GNSS)在遮挡或多径效应严重的环境下精度降低,惯性导航系统(INS)的误差会随时间积累,超宽带定位(UWB)的精度受非视距(NLOS)传播影响。为克服上述不足,组合导航技术应运而生,它将多种导航系统的优势互补,以期实现更精准、更可靠的定位导航。

本文关注的重点是基于卡尔曼滤波框架的IMM(交互式多模型)算法在GNSS、UWB和INS这三种子系统间的切换应用。卡尔曼滤波作为一种最优状态估计器,广泛应用于组合导航系统中。IMM算法则是一种能够处理系统模型不确定性的有效工具,它通过维护多个模型并根据模型概率动态切换,使得系统能够适应不同的运行状态和环境条件。本文将详细介绍IMM-GNSS-UWB-INS组合导航系统的建模、卡尔曼滤波实现以及模型切换策略,并进行仿真验证。

2. 理论基础

2.1 卡尔曼滤波

卡尔曼滤波是一种用于线性系统状态估计的递归算法,它基于系统动态模型和观测模型,通过预测和更新两个步骤,不断修正状态估计值,达到最优估计的目的。其基本公式可概括为:

  • 预测步骤:

    • 状态预测: 𝑥^𝑘∣𝑘−1=𝐹𝑘𝑥^𝑘−1∣𝑘−1+𝐵𝑘𝑢𝑘x^k∣k−1=Fkx^k−1∣k−1+Bkuk

    • 协方差预测:𝑃𝑘∣𝑘−1=𝐹𝑘𝑃𝑘−1∣𝑘−1𝐹𝑘𝑇+𝑄𝑘Pk∣k−1=FkPk−1∣k−1FkT+Qk

  • 更新步骤:

    • 卡尔曼增益:𝐾𝑘=𝑃𝑘∣𝑘−1𝐻𝑘𝑇(𝐻𝑘𝑃𝑘∣𝑘−1𝐻𝑘𝑇+𝑅𝑘)−1Kk=Pk∣k−1HkT(HkPk∣k−1HkT+Rk)−1

    • 状态更新:𝑥^𝑘∣𝑘=𝑥^𝑘∣𝑘−1+𝐾𝑘(𝑧𝑘−𝐻𝑘𝑥^𝑘∣𝑘−1)x^k∣k=x^k∣k−1+Kk(zk−Hkx^k∣k−1)

    • 协方差更新:𝑃𝑘∣𝑘=(𝐼−𝐾𝑘𝐻𝑘)𝑃𝑘∣𝑘−1Pk∣k=(I−KkHk)Pk∣k−1

其中,𝑥^x^表示状态估计值,𝑃P表示状态协方差,𝐹F是状态转移矩阵,𝐵B是控制矩阵,𝑢u是控制输入,𝑄Q是过程噪声协方差,𝐻H是观测矩阵,𝑅R是观测噪声协方差,𝑧z是观测值。

2.2 交互式多模型(IMM)算法

IMM算法是一种处理系统模型不确定性的有效方法,其核心思想是在多个假设的模型下并行运行卡尔曼滤波器,并根据模型概率动态切换,以实现对系统状态的自适应估计。IMM算法主要包括以下步骤:

  1. 模型混合: 根据上一时刻的模型概率,对当前时刻各个模型的初始状态和协方差进行加权混合。

  2. 卡尔曼滤波: 对每个模型分别进行卡尔曼滤波预测和更新。

  3. 模型概率更新: 根据每个模型的观测残差,更新各个模型的后验概率。

  4. 状态估计融合: 对每个模型的滤波结果,根据其对应的后验概率进行加权融合,得到最终的状态估计。

3. IMM-GNSS-UWB-INS 组合导航系统建模

3.1 系统状态模型

3.3 子模型设定

根据实际应用场景,定义以下三个子模型:

  1. 模型1(GNSS-INS): GNSS和INS工作,适用于开阔环境。

  2. 模型2(UWB-INS): UWB和INS工作,适用于GNSS遮挡环境。

  3. 模型3(INS): 只有INS工作,适用于GNSS和UWB均不可用的环境。

每个子模型对应不同的状态转移矩阵和观测矩阵。

4. IMM-卡尔曼滤波算法实现

IMM-卡尔曼滤波算法的实现流程如下:

  1. 初始化: 初始化每个模型的初始状态估计值、协方差矩阵和模型概率。

  2. 混合: 根据上一时刻的模型概率,对当前时刻各个模型的初始状态和协方差进行加权混合。

  3. 滤波: 对每个模型分别进行卡尔曼滤波预测和更新,利用各自对应的状态转移矩阵、观测矩阵和观测值。

  4. 模型概率更新: 根据每个模型的观测残差,计算模型似然值,并更新模型后验概率。

  5. 融合: 对每个模型的滤波结果,根据其对应的后验概率进行加权融合,得到最终的状态估计。

  6. 循环: 将最终的状态估计值和协方差矩阵作为下一时刻的先验值,重复步骤2-5。

5. 仿真实验与结果分析

为了验证所提出方法的有效性,进行了仿真实验。仿真实验场景设定为:

  • 初始状态:位置、速度、姿态均为已知,加速度计和陀螺仪零偏为随机值。

  • 系统运动:模拟一段较为复杂的运动轨迹,包括直线、转弯等运动状态。

  • 噪声:GNSS、UWB和INS均存在随机噪声,且UWB存在一定的NLOS误差。

  • 子模型切换:模拟GNSS遮挡和UWB失效情况,实现子模型之间的切换。

实验结果表明:

  • IMM算法能够准确估计系统状态,并根据环境变化动态切换子模型。

  • 与单一导航系统相比,所提出的IMM-GNSS-UWB-INS组合导航系统在所有场景下的定位精度均得到显著提升。

  • 在GNSS遮挡和UWB失效场景下,系统仍能保持一定的定位精度,体现了较强的鲁棒性。

6. 结论

本文详细介绍了基于卡尔曼滤波的IMM-GNSS-UWB-INS子模型切换算法组合导航方法。该方法充分利用GNSS、UWB和INS三种导航系统的优势,并采用IMM算法进行动态模型切换,有效提高了组合导航系统的精度和鲁棒性。仿真实验结果验证了所提出方法的有效性和优越性。该方法为复杂环境下的高精度导航定位提供了一种有前景的解决方案。

📣 部分代码

function [rpath, dpath, mytestflag] = psinsenvi()

rpath = 'C:\Users\zhang\Desktop\psins190708_github';

dpath = 'C:\Users\zhang\Desktop\psins190708_github\data\';

mytestflag = 0;

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值