✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
全球定位系统(GPS)和惯性导航系统(INS)是两种互补的导航技术。GPS 能够提供绝对位置信息,但易受信号遮挡、多径效应和干扰的影响。INS 则能够自主工作,提供高精度的短期导航信息,但其误差会随时间累积。因此,将 GPS 和 INS 集成,利用两者的优势互补,可以构建出一种精度高、可靠性强的导航系统,满足各种复杂环境下的导航需求。其中,卡尔曼滤波器 (KF) 是实现 INS/GPS 集成的重要工具。然而,传统的扩展卡尔曼滤波器 (EKF) 在处理非线性系统时存在线性化误差,导致滤波精度下降甚至发散。无迹卡尔曼滤波器 (UKF) 作为一种更有效的非线性滤波方法,在 INS/GPS 集成应用中展现出优越的性能。本文将深入探讨基于 UKF 的 INS/GPS 集成滤波跟踪方法,包括系统模型建立、UKF 算法实现以及性能分析,并讨论其在实际应用中的挑战与未来发展方向。
1. INS/GPS 集成导航系统模型
INS/GPS 集成导航系统通常采用松耦合或紧耦合两种方式。松耦合集成中,INS 和 GPS 独立工作,GPS 的位置和速度信息作为量测量,用于修正 INS 的误差状态。紧耦合集成中,INS 和 GPS 的原始测量数据 (如伪距和多普勒频移) 直接用于滤波,可以充分利用 GPS 信息,在 GPS 信号较弱的环境下仍能保持较高的导航精度。本文主要探讨基于松耦合集成的 UKF 滤波。
建立准确的系统模型是实现高精度滤波的基础。INS/GPS 松耦合集成系统的状态方程通常包括 INS 误差状态,如位置误差、速度误差、姿态误差以及陀螺仪和加速度计的漂移。这些误差状态可以用微分方程进行描述,构成状态方程:
scss
ẋ(t) = f(x(t), u(t), w(t))
其中,x(t) 为状态向量,包括 INS 的误差状态;u(t) 为控制输入,例如飞机的控制指令;w(t) 为系统噪声,通常假设为高斯白噪声。
量测方程描述了量测量与状态变量之间的关系。在 INS/GPS 松耦合集成中,量测量通常是 GPS 提供的位置和速度信息,与 INS 推算的位置和速度之差,即:
scss
z(t) = h(x(t), v(t))
其中,z(t) 为量测向量,即 GPS 和 INS 的位置和速度之差;v(t) 为量测噪声,通常假设为高斯白噪声。
需要指出的是,INS 的误差状态方程和量测方程通常是非线性的。例如,姿态误差的传播以及 INS 推算的位置和速度都涉及到三角函数运算,使得 EKF 在线性化过程中引入较大的误差。
2. 无迹卡尔曼滤波器 (UKF) 算法
UKF 是一种基于无迹变换 (Unscented Transformation, UT) 的非线性滤波算法。它通过选取一组被称为 Sigma 点的样本点,这些样本点能够较好地代表状态变量的概率分布。通过将这些 Sigma 点代入非线性状态方程和量测方程,可以更精确地估计状态变量的均值和方差,从而避免了 EKF 的线性化误差。
UKF 算法主要包含以下几个步骤:
-
初始化: 初始化状态向量 x̂₀ 和协方差矩阵 P₀。
-
Sigma 点生成: 根据状态向量 x̂ₖ 和协方差矩阵 Pₖ 生成 2n+1 个 Sigma 点 (其中 n 为状态向量的维数):
css
χ₀,ₖ = x̂ₖ
χᵢ,ₖ = x̂ₖ + (√( (n+λ)Pₖ ))ᵢ , i = 1, ..., n
χᵢ₊ₙ,ₖ = x̂ₖ - (√( (n+λ)Pₖ ))ᵢ , i = 1, ..., n其中,λ = α²(n+κ) - n 是一个缩放因子,α 控制 Sigma 点的分布范围,κ 通常取 0。
-
时间更新: 将每个 Sigma 点代入状态方程,得到预测的 Sigma 点:
scss
χᵢ,ₖ₊₁ = f(χᵢ,ₖ, uₖ, 0)
计算预测的状态向量 x̂ₖ₊₁⁻ 和协方差矩阵 Pₖ₊₁⁻:
css
x̂ₖ₊₁⁻ = ∑ᵢ Wᵢ⁽ᵐ⁾ χᵢ,ₖ₊₁
Pₖ₊₁⁻ = ∑ᵢ Wᵢ⁽ᶜ⁾ (χᵢ,ₖ₊₁ - x̂ₖ₊₁⁻)(χᵢ,ₖ₊₁ - x̂ₖ₊₁⁻)ᵀ + Q其中,Wᵢ⁽ᵐ⁾ 和 Wᵢ⁽ᶜ⁾ 分别是均值权重和协方差权重,Q 是系统噪声的协方差矩阵。
-
量测更新: 将预测的 Sigma 点代入量测方程,得到预测的量测量:
scss
zᵢ,ₖ₊₁ = h(χᵢ,ₖ₊₁, 0)
计算预测的量测向量 ẑₖ₊₁⁻:
ẑₖ₊₁⁻ = ∑ᵢ Wᵢ⁽ᵐ⁾ zᵢ,ₖ₊₁
计算量测协方差矩阵 Sₖ₊₁ 和互协方差矩阵 Pₓz,ₖ₊₁:
scss
Sₖ₊₁ = ∑ᵢ Wᵢ⁽ᶜ⁾ (zᵢ,ₖ₊₁ - ẑₖ₊₁⁻)(zᵢ,ₖ₊₁ - ẑₖ₊₁⁻)ᵀ + R
Pₓz,ₖ₊₁ = ∑ᵢ Wᵢ⁽ᶜ⁾ (χᵢ,ₖ₊₁ - x̂ₖ₊₁⁻)(zᵢ,ₖ₊₁ - ẑₖ₊₁⁻)ᵀ其中,R 是量测噪声的协方差矩阵。
-
滤波增益计算: 计算卡尔曼增益 Kₖ₊₁:
css
Kₖ₊₁ = Pₓz,ₖ₊₁ Sₖ₊₁⁻¹
-
状态更新: 更新状态向量 x̂ₖ₊₁ 和协方差矩阵 Pₖ₊₁:
css
x̂ₖ₊₁ = x̂ₖ₊₁⁻ + Kₖ₊₁ (zₖ₊₁ - ẑₖ₊₁⁻)
Pₖ₊₁ = Pₖ₊₁⁻ - Kₖ₊₁ Sₖ₊₁ Kₖ₊₁ᵀ
UKF 算法的关键在于无迹变换,它能够更好地逼近非线性函数的概率分布,从而提高滤波精度。
3. 基于 UKF 的 INS/GPS 集成滤波性能分析
相比于 EKF,基于 UKF 的 INS/GPS 集成滤波具有以下优势:
-
更高的精度: UKF 避免了 EKF 的线性化误差,能够更精确地估计状态变量的均值和方差,从而提高滤波精度。
-
更强的鲁棒性: UKF 对非线性系统的处理能力更强,能够更好地适应复杂的运动环境和较大的初始误差。
-
无需计算雅可比矩阵: UKF 不需要计算雅可比矩阵,简化了计算过程,提高了算法的效率。
通过仿真实验和实际测试可以验证 UKF 在 INS/GPS 集成导航中的性能。仿真实验可以通过模拟不同的运动轨迹、GPS 信号质量以及 INS 的性能指标,来评估 UKF 的滤波精度、收敛速度和鲁棒性。实际测试可以通过在真实环境下采集 GPS 和 INS 数据,来验证 UKF 在实际应用中的性能。
实验结果表明,基于 UKF 的 INS/GPS 集成滤波能够有效地抑制 INS 的误差累积,提高导航精度和可靠性。在高动态环境下,UKF 的性能优势更加明显。
4. 基于 UKF 的 INS/GPS 集成滤波面临的挑战
尽管 UKF 在 INS/GPS 集成中表现出优越的性能,但在实际应用中仍面临一些挑战:
-
计算复杂度: UKF 需要计算 2n+1 个 Sigma 点,相比于 EKF,计算量更大。尤其是在高维状态空间下,计算负担会显著增加。
-
参数选择: UKF 算法中存在一些参数需要调整,例如 α, β, κ 等。这些参数的选择会对滤波性能产生影响,需要根据具体的应用场景进行优化。
-
强非线性问题: 对于极强的非线性系统,UKF 的性能可能仍然不够理想。需要考虑更高级的滤波算法,例如粒子滤波器 (Particle Filter, PF)。
-
实时性要求: 在某些实时性要求高的应用场景下,UKF 的计算复杂度可能会限制其应用。需要对算法进行优化,例如采用并行计算等方法,来提高算法的效率。
5. 基于 UKF 的 INS/GPS 集成滤波未来发展方向
未来,基于 UKF 的 INS/GPS 集成滤波的研究方向主要集中在以下几个方面:
-
降低计算复杂度: 研究更高效的 UKF 变体,例如简化 UKF (Simplified UKF, SUKF) 和平方根 UKF (Square-Root UKF, SRUKF),以降低计算复杂度,提高算法的实时性。
-
自适应参数调整: 研究自适应参数调整方法,根据系统状态动态调整 UKF 的参数,提高算法的鲁棒性和适应性。
-
与其他滤波算法的融合: 将 UKF 与其他滤波算法,例如粒子滤波器、自适应滤波器等进行融合,构建更强大的滤波算法,提高滤波精度和可靠性。
-
深度学习与 UKF 结合: 利用深度学习技术,学习 INS 误差模型,提高 INS 的预测精度,从而提高 UKF 的滤波性能。
-
多传感器融合: 将 INS 和 GPS 与其他传感器 (例如视觉传感器、激光雷达等) 进行融合,构建多传感器融合导航系统,提高导航精度和可靠性。
6. 结论
本文深入探讨了基于 UKF 的 INS/GPS 集成滤波跟踪方法。UKF 作为一种更有效的非线性滤波算法,在 INS/GPS 集成应用中展现出优越的性能。相比于 EKF,UKF 能够避免线性化误差,提高滤波精度和鲁棒性。然而,UKF 在实际应用中仍面临一些挑战,例如计算复杂度、参数选择等。未来,随着计算能力的提升和算法的不断改进,基于 UKF 的 INS/GPS 集成滤波将在更多领域得到应用,并为人们提供更精确、更可靠的导航服务。 进一步的研究将集中在降低计算复杂度、自适应参数调整、与其他滤波算法的融合以及多传感器融合等方面,以推动 INS/GPS 集成导航技术的发展。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
function pred_p = pred_cov(sigma_pt_prop,pred_s,n,k)
pred_p = zeros(8,8);
for i=2 : 17
pred_p = pred_p + 0.5 * (sigma_pt_prop(:,i)-pred_s)*(sigma_pt_prop(:,i)-pred_s)';
end
pred_p = (pred_p + k * (sigma_pt_prop(:,1)-pred_s)*(sigma_pt_prop(:,1)-pred_s)') / (n+k);
end
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇