【形状记忆合金的本构模型】基于 FEM实现与速率无关的耗散固体研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

形状记忆合金 (Shape Memory Alloys, SMAs) 因其独特的超弹性 (Superelasticity, SE) 和形状记忆效应 (Shape Memory Effect, SME) 而在工程领域备受关注。为了准确预测 SMA 构件在复杂载荷条件下的力学行为,建立精确可靠的本构模型至关重要。本文旨在探讨基于有限元方法 (Finite Element Method, FEM) 实现的 SMA 本构模型,重点关注速率无关的耗散固体,并结合 Matlab 代码进行验证和应用。通过对现有主流本构模型的分析,选取合适的模型进行理论推导、数值实现,并探讨其在 FEM 框架下的应用,从而为 SMA 结构的设计和分析提供理论支撑。

关键词: 形状记忆合金, 本构模型, 有限元方法, 超弹性, 形状记忆效应, 速率无关, 耗散固体, Matlab

1. 引言

形状记忆合金是一类具有特殊功能的金属材料,在一定温度范围内,可以经历可逆的固态相变,从而表现出超弹性 (SE) 和形状记忆效应 (SME)。超弹性是指 SMA 在一定应力范围内,可以承受较大的变形并在卸载后完全恢复其原始形状。形状记忆效应则是指 SMA 在低温下发生塑性变形后,通过加热可以恢复其原始形状。这些独特的力学性能使得 SMA 在航空航天、生物医学、土木工程等领域具有广阔的应用前景。

然而,SMA 的力学行为复杂,受温度、应力、应变速率等多种因素的影响。为了准确预测 SMA 构件在复杂载荷条件下的力学行为,需要建立合适的本构模型。本构模型是描述材料力学行为的数学模型,它能够描述材料的应力-应变关系,并预测材料在不同载荷条件下的响应。

基于有限元方法的数值模拟是分析 SMA 结构力学行为的有效手段。通过将 SMA 的本构模型嵌入到有限元程序中,可以模拟 SMA 结构在复杂载荷条件下的变形和应力分布。因此,研究基于 FEM 实现的 SMA 本构模型,并探讨其在速率无关的耗散固体模拟中的应用,具有重要的理论和实践意义。

2. 形状记忆合金的本构模型概述

SMA 的本构模型种类繁多,按照不同的分类标准可以分为不同的类型。按照相变理论,可以分为微观模型和宏观模型。微观模型基于晶格尺度的相变机制,需要大量的计算资源,因此在工程应用中受到限制。宏观模型则基于连续介质力学的框架,通过唯象的方法描述 SMA 的力学行为,计算效率更高,更适合于工程应用。

按照考虑的因素,可以分为一维模型、二维模型和三维模型。一维模型通常用于描述 SMA 线材或梁的力学行为,而二维和三维模型则可以描述 SMA 构件在复杂载荷条件下的力学行为。

按照时间依赖性,可以分为速率无关模型和速率相关模型。速率无关模型忽略了应变速率的影响,适用于低应变速率的情况。速率相关模型则考虑了应变速率的影响,适用于高应变速率的情况。

常用的 SMA 本构模型包括:

  • Tanaka 模型:

     这是最早提出的 SMA 本构模型之一,基于热力学原理,描述了 SMA 的相变行为。

  • Liang-Rogers 模型:

     在 Tanaka 模型的基础上,引入了更多的参数,可以更好地描述 SMA 的力学行为。

  • Brinson 模型:

     这是一个经典的三维 SMA 本构模型,考虑了应力、应变、温度等因素的影响,可以较好地描述 SMA 的超弹性和形状记忆效应。

  • Auricchio 模型:

     该模型基于混合定律,将奥氏体和马氏体的力学行为进行加权平均,可以有效地描述 SMA 的力学行为。

  • Boyd-Lagoudas 模型:

     这是一个更复杂的 SMA 本构模型,考虑了更多的物理因素,可以更准确地描述 SMA 的力学行为。

3. 基于 FEM 实现的速率无关 SMA 本构模型

本文重点关注速率无关的 SMA 本构模型,并将其嵌入到有限元程序中。选择合适的本构模型是关键。考虑到计算效率和精度,选取 Brinson 模型作为研究对象。Brinson 模型基于三维热

  • 隐式积分法:

     隐式积分法具有良好的稳定性,适用于求解非线性问题。常用的隐式积分法包括后向欧拉法和 Newmark 法。

  • 显式积分法:

     显式积分法计算效率高,但稳定性较差,适用于求解线性问题。常用的显式积分法包括中心差分法。

本文采用隐式积分法对本构方程进行离散化,并将其嵌入到商业有限元软件 ABAQUS 中。通过编写用户材料子程序 (User Material Subroutine, UMAT),可以自定义材料的本构行为,并将其应用到有限元模型中。

4. Matlab 代码验证

为了验证 Brinson 模型的正确性,使用 Matlab 代码进行数值模拟。首先,需要确定模型的材料参数,这些参数可以从实验数据中获得,也可以从文献中查阅。然后,根据 Brinson 模型的方程,编写 Matlab 代码进行求解。

Matlab 代码的主要步骤包括:

  1. 初始化参数:

     设置材料参数、温度、应力等参数。

  2. 迭代求解:

     使用迭代方法求解本构方程,例如 Newton-Raphson 法。

  3. 计算应力和应变:

     根据求解结果,计算应力和应变。

  4. 绘制应力-应变曲线:

     将计算结果绘制成应力-应变曲线,并与实验数据进行对比。

5. 应用案例:基于 FEM 的 SMA 梁弯曲分析

为了验证基于 FEM 的 SMA 本构模型的有效性,选取一个简单的应用案例:SMA 梁的弯曲分析。

首先,建立一个三维的 SMA 梁的有限元模型。选择合适的单元类型,例如 solid 单元或 beam 单元。然后,将 Brinson 模型嵌入到有限元程序中,并设置材料参数。最后,施加弯曲载荷,例如三点弯曲或四点弯曲,并进行数值模拟。

通过 FEM 模拟,可以获得 SMA 梁的变形和应力分布。通过分析这些结果,可以了解 SMA 梁的力学行为,并验证本构模型的有效性。

例如,可以观察到 SMA 梁在弯曲过程中,由于应力集中,梁的某些区域会发生相变,从而导致材料的超弹性行为。通过调节温度和载荷,可以控制相变的发生和发展,从而实现对 SMA 梁力学行为的控制。

6. 结论与展望

本文探讨了基于有限元方法实现的形状记忆合金本构模型,重点关注速率无关的耗散固体。通过对 Brinson 模型进行理论推导、数值实现,并结合 Matlab 代码进行验证,证明了该模型在描述 SMA 力学行为方面的有效性。

未来的研究方向包括:

  • 发展更精确的 SMA 本构模型:

     现有的本构模型仍然存在一些局限性,例如对三维复杂载荷条件下的描述不够准确。因此,需要发展更精确的 SMA 本构模型,以更好地描述 SMA 的力学行为。

  • 考虑速率相关效应:

     在某些应用场景下,应变速率对 SMA 的力学行为有显著影响。因此,需要开发考虑速率相关效应的 SMA 本构模型。

  • 研究 SMA 的疲劳行为:

     SMA 的疲劳行为是影响其工程应用的重要因素。因此,需要研究 SMA 的疲劳行为,并建立相应的疲劳模型。

  • 将本构模型应用到更复杂的结构中:

     可以将本文研究的本构模型应用到更复杂的结构中,例如 SMA 薄膜、SMA 驱动器等,以实现对这些结构的力学行为的预测和优化。

  • 开发更高效的数值方法:

     SMA 的非线性行为使得数值模拟的计算量很大。因此,需要开发更高效的数值方法,以提高计算效率。

⛳️ 运行结果

🔗 参考文献

[1] 黄幸,万见峰,陈世朴,等.FeMnSi基形状记忆合金在水溶液中的电化学腐蚀[J].上海交通大学学报, 2002, 36(1):3.DOI:10.3321/j.issn:1006-2467.2002.01.006.

[2] 温春生.FeMnSi形状记忆合金的低温松弛及智能特性[J].河北工业大学, 2002.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值