基于Mealpy库优化CNN-BiLSTM-Attention电力负荷预测研究附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着电力系统的智能化发展,准确的电力负荷预测对电网的安全稳定运行和经济调度至关重要。本文提出一种基于 Mealpy 库优化的 CNN-BiLSTM-Attention 模型,用于电力负荷预测。通过 Mealpy 库中的智能优化算法对 CNN-BiLSTM-Attention 模型的超参数进行优化,充分发挥卷积神经网络(CNN)提取空间特征、双向长短期记忆网络(BiLSTM)捕捉时间序列双向信息以及注意力机制(Attention)聚焦关键信息的优势。实验结果表明,优化后的模型在预测精度上显著优于传统模型和未优化模型,为电力系统的负荷预测提供了一种更有效的方法。

关键词

Mealpy 库;CNN-BiLSTM-Attention;电力负荷预测;超参数优化;智能算法

一、引言

电力负荷预测是电力系统运行与规划中的关键环节,其预测结果直接影响电力系统的发电计划制定、电网调度安排以及设备检修决策等。准确的电力负荷预测有助于提高电力资源的利用效率,降低发电成本,保障电网的安全稳定运行。然而,电力负荷受天气、时间、社会经济活动等多种复杂因素的影响,具有高度的非线性和波动性,传统的预测方法如时间序列分析、回归分析等难以满足日益增长的高精度预测需求。

近年来,深度学习凭借其强大的特征提取和非线性映射能力,在电力负荷预测领域得到了广泛应用。卷积神经网络(CNN)能够自动提取数据中的局部特征和空间特征,双向长短期记忆网络(BiLSTM)可以同时从正向和反向捕捉时间序列的长期依赖关系,注意力机制(Attention)则能根据任务需求聚焦于输入序列中重要的信息,三者结合在处理复杂的电力负荷数据时展现出一定的优势 。但 CNN-BiLSTM-Attention 模型的性能在很大程度上依赖于超参数的设置,不合适的超参数会导致模型出现过拟合或欠拟合现象,降低预测精度。智能优化算法能够通过模拟自然界的生物进化或群体智能行为,在超参数空间中搜索最优解,从而提高模型的性能。Mealpy 库是一个功能强大且易于使用的智能优化算法库,包含多种智能优化算法。因此,本文基于 Mealpy 库对 CNN-BiLSTM-Attention 模型的超参数进行优化,旨在进一步提高电力负荷预测的准确性。

二、数据预处理

2.1 数据来源

本研究收集某地区电力公司的历史电力负荷数据,数据记录频率为每小时一次,同时收集对应时间段的气象数据(包括温度、湿度、风速、天气状况等)和日期时间数据(如工作日 / 周末、节假日等)。气象数据可从当地气象部门的公开平台获取,日期时间数据可通过对原始数据中的日期字段进行解析得到。

2.2 数据清洗

对收集到的数据进行全面的数据清洗工作。首先,检查数据中是否存在缺失值,对于缺失值采用插值法进行填充,如线性插值、多项式插值等;对于存在异常值的数据记录,通过统计分析和领域知识进行识别,若异常值是由于数据采集错误导致,则进行修正或删除处理。

2.3 数据编码

对于天气状况等非数值型数据,采用独热编码(One-Hot Encoding)的方式将其转换为数值型向量,以便模型能够处理。对于工作日 / 周末、节假日等二值化数据,采用 0 - 1 编码,0 表示非工作日或非节假日,1 表示工作日或节假日。

2.4 数据归一化

图片

2.5 数据划分

将预处理后的数据按照 7:1:2 的比例划分为训练集、验证集和测试集。训练集用于模型的参数训练,验证集用于调整模型的超参数,测试集用于评估模型的最终预测性能。

三、模型构建与优化

3.1 CNN-BiLSTM-Attention 模型结构

3.1.1 卷积神经网络(CNN)

CNN 部分主要用于提取电力负荷数据中的局部特征和空间特征。在电力负荷预测中,虽然数据本质上是时间序列,但通过 CNN 的卷积操作,可以捕捉到数据在时间维度上的局部模式。模型中使用多个卷积层,每个卷积层包含不同数量的卷积核,通过卷积核在数据上进行滑动卷积操作,提取不同的特征。卷积层之后通常会连接池化层,如最大池化层,用于降低数据的维度,减少计算量,同时保留重要的特征信息。

3.1.2 双向长短期记忆网络(BiLSTM)

BiLSTM 部分能够从正向和反向两个方向对时间序列数据进行处理,充分捕捉数据中的长期依赖关系。在电力负荷预测中,过去的负荷数据对当前负荷有影响,同时未来的负荷趋势也能从一定程度上反映当前负荷的变化情况,BiLSTM 的双向结构可以更好地利用这些信息。BiLSTM 由多个 BiLSTM 层堆叠而成,每个 BiLSTM 层都包含正向和反向的 LSTM 单元,它们分别从不同方向对输入数据进行处理,然后将两个方向的输出进行合并作为该层的输出。

3.1.3 注意力机制(Attention)

注意力机制用于聚焦输入序列中对预测结果更为重要的部分。将 BiLSTM 的输出作为注意力机制的输入,通过计算注意力权重,对 BiLSTM 的输出进行加权求和,使得模型能够更加关注对电力负荷预测起关键作用的信息,从而提高预测的准确性。

3.2 Mealpy 库优化超参数

Mealpy 库中包含多种智能优化算法,如鲸鱼优化算法(WOA)、粒子群优化算法(PSO)、灰狼优化算法(GWO)等。本研究选择鲸鱼优化算法(WOA)对 CNN-BiLSTM-Attention 模型的超参数进行优化。超参数优化的目标函数为验证集上的均方误差(MSE),通过不断调整模型的超参数(如 CNN 的卷积核数量、BiLSTM 的层数、学习率等),利用 WOA 在超参数空间中搜索使得目标函数最小的超参数组合。具体优化流程如下:

  1. 初始化 WOA 算法的参数,包括种群规模、最大迭代次数等。
  1. 随机生成一组超参数组合,构建 CNN-BiLSTM-Attention 模型,并使用训练集对模型进行训练,在验证集上计算目标函数值(均方误差)。
  1. 根据 WOA 算法的更新规则,更新种群中的个体(超参数组合),得到新的超参数组合。
  1. 重复步骤 2 和步骤 3,直到达到最大迭代次数或满足停止条件。
  1. 选择目标函数值最小的超参数组合作为优化后的超参数,用于构建最终的 CNN-BiLSTM-Attention 模型。

四、结论与展望

本文提出基于 Mealpy 库优化的 CNN-BiLSTM-Attention 模型用于电力负荷预测,通过 Mealpy 库中的鲸鱼优化算法对模型超参数进行优化,有效提高了模型的预测精度。实验结果表明,该模型在预测性能上优于传统模型和未优化模型。然而,本研究仍有改进空间,未来可以尝试将更多智能优化算法应用于模型超参数优化,探索不同算法的优势;同时,进一步挖掘更多影响电力负荷的因素,丰富数据特征,以提升模型的泛化能力和预测准确性。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 朱凌建,荀子涵,王裕鑫,等.基于CNN-BiLSTM的短期电力负荷预测[J].电网技术, 2021(011):045.

[2] 吴小涛,袁晓辉,毛玉鑫,等.基于鹈鹕优化CNN-BiLSTM的电力负荷预测[J].水电能源科学, 2024, 42(8):209-212.

[3] 陈仪,刘春元.基于聚类集合的EMD-CNN-BiLSTM自注意力机制短期电力负荷预测[J].软件工程, 2025, 28(3):1-5.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值