MATLAB数据分析与统计
文章平均质量分 89
技术提高效率
技术提高效率,让工作更高效
展开
-
1.数据的导入与导出
数据的导入与导出 在用MATLAB进行编程时,不可避免的要涉及到数据的导入与导出,如果数据量比较小,可以通过定义数组的形式直接把数据写在程序中,或是把程序直接输出到MATLAB命令窗口;但是当数据量比较大的时候,这种方法就行不通了。这种情况下就需要从包含数据的外部文件读取数据到MATLAB应用程序中,结果的输出也应该直接写到数据文件。 MATLAB提供了许原创 2017-01-19 12:41:52 · 56436 阅读 · 2 评论 -
13 MATLAB判别分析
判别分析是对未知类别的样本进行归类的一种方法。虽然也是对样品进行分类,但它与聚类分析还是不同的。聚类分析的研究对象还没有分类,就是要根据抽样的样本进行分类,而判别分析的研究对象已经有了分类,只是根据抽样的样本建立判别公式和判别准则,然后根据这些判别公式和判别准则,判别未知类别的样品所属的类别。 判别分析有着非常广泛的应用,比如在考古学上,根据出土物品判别墓葬年代,墓主人身份,性别;在医学上,根原创 2017-05-06 14:47:00 · 17810 阅读 · 2 评论 -
14 MATLAB主成分分析
主成分分析又称主分量分析,由皮尔逊在1901年首次引入,后来由霍特林在1933年进行了发展。主成分分析是一种通过降维技术把多个变量化为少数几个主成分(即综合变量)的多元统计方法,这些主成分能够反映原始变量的大部分信息,通过表示为原始变量的线性组合,为了使得这些主成分所包含的信息互不重叠,要求各主成分之间互不相关。主成分分析在很多领域都有广泛的应用,一般来说,当研究的问题涉及多个变量,并且变量间相关原创 2017-05-07 07:56:04 · 47184 阅读 · 4 评论 -
15.MATLAB因子分析
因子分析就是从研究对象中寻找公共因子的方法。判别分析、聚类分析、因子分析的比较:对面来了来了一群女生,我们一眼就能分辨出谁美谁丑,这是判别分析;并且在我们脑海里会对这群女生聚为两类:美的一类和丑的一类,这是聚类分析;我们之所以认为某个女孩漂亮是因为她具有漂亮女孩所具有的一些共同点,比如漂亮的脸蛋、高挑的身材等等,这种从研究对象中寻找公共因子的办法就是因子分析。 因子分析也是利用降维思维原创 2017-05-08 12:43:03 · 39780 阅读 · 2 评论 -
2.数据的预处理
数据导入MATLAB之后,通常需要对数据进行一些预处理,例如平滑处理(去噪)、标准化变换和极差归一化变换等。1.数据的平滑处理 1.1 smooth函数平滑处理 1.2 smoothts函数平滑处理 1.3 medfilt1函数平滑处理2. 数据的标准化变换3. 数据的极差归一化变换原创 2017-02-04 08:34:46 · 26985 阅读 · 0 评论 -
3 概率分布与随机函数
随着计算机技术的快速发展,随机数在越来越多的领域得到了广泛应用,例如信息安全,网络游戏,计算机仿真和模拟计算,这一章将介绍常用的概率分布及概率计算、利用MATLAB生成随机数。 1.概率分布及概率计算 1.1 概率分布的定义 设X为一随机变量,对任意实数x,定义 F(x)=P(X 为X的分布函数。根据随机变量取值的特定,随机变量分为离散型和连续型两种原创 2017-02-06 09:30:42 · 10116 阅读 · 0 评论 -
4 描述性统计量和统计图
.描述性统计量包括均值、方差、标准差、最大值、最小值、极差、中位数、分位数、众数、变异系数、中心矩、原点炬、偏度、峰度、协方差和相关系数。 统计图包括箱线图、直方图、经验分布函数图、正态概率图、P-P图和Q-Q图。本章以下表中的数据示例,对其进行操作演示。1 .描述性统计量包括均值、方差、标准差、最大值、最小值、极差、中位数、分位数、众数、变异系数、中心矩、原点炬、偏度、峰原创 2017-02-08 11:28:26 · 26203 阅读 · 2 评论 -
5 MATLAB参数估计与假设检验-参数估计
参数估计:在很多实际问题中,为了进行某些统计推断,需要确定总体服从的分布,通常根据问题的实际背景或适当的统计方法可以判断总体分布的类型,但是总体分布中往往含有未知参数,需要用样本观测数据进行估计。即根据已有的数据来估算数分布函数中的参数的值。例如,某门课程的考试成绩服从正态分布N(u,a^2),其中u和a是未知的参数,就需要用样本观测数据来进行估计出u和a的值。假设检验:假设检验的原创 2017-02-19 10:42:16 · 18258 阅读 · 0 评论 -
6 MATLAB参数估计与假设-正态总体参数的检验
正态总体参数的检验 1 总体标准差已知时的单个正态总体均值的U检验 例: 某切割机正常工作时,切割的金属棒的长度服从正态分布N(100,4)。从该切割机切割的一批金属棒中随机抽取15根,测得长度为: 97 102 105 112 99 103 102 94 100 95 105 98 102 100 103假设总体的方差不变,试检验该切割机工作是否正常,即检验总体均值是否等原创 2017-02-19 10:43:19 · 11206 阅读 · 0 评论 -
7.MATLAB参数统计与假设检验-常用非参数检验
常用非参数检验在用样本数据对总体信息做出统计推断时,通常要求抽样应满足随机性和独立性,因为几乎所有的抽样定理都是建立在数据独立的基础之上的。而在用样本数据对正态总体参数做出统计推断(例如参数估计和假设检验)时,还要附加一个要求:样本数据应服从正态分布,这种数据分布类型已知的总体参数的假设称为参数假设检验。与参数假设检验相对应的还有非参数假设检验,例如分布的正态性检验,样本的随机性检验等,这类检原创 2017-02-20 09:35:58 · 15460 阅读 · 0 评论 -
8.MATLAB参数估计与假设检验-非参数参数检验-分布的拟合与检验
分布的拟合与检验 在某些统计推断中, 通常假定总体服从一定的分布(例如正态分布),然后在这个分布的基础上,构造相应的统计量,根据统计量的分布做出一些统计推断,而统计量的分布通常依赖于总体的分布假设,也就是说总体所服从的分布在统计推断中至关重要,会影响到结果的可靠性。从这个意义上来说,由样本观测数据去推断总体所服从的分布是非常必要的。这一节的就是根据样本观测数据拟合总体的分布,并进行分布的检验。原创 2017-02-21 08:47:31 · 23217 阅读 · 8 评论 -
9 MATLAB参数估计与假设检验-核密度估计
核密度估计 在很多统计问题中,需要由样本去估计总体的概率分布密度,常用的估计方法由参数法和非常数法。参数法是假定总体服从某种已知的分布,即密度函数的形式是已知的,需要由样本估计其中的参数,这种方法依赖于实现对总体分布的假设,而做出这种假设往往是非常困难的。非参数法则不存在这样的“假设”困难,这里介绍的就是一种非参数密度估计法--核密度估计。核密度估计需要指定核函数和窗宽,但是取不同的核函原创 2017-02-22 08:49:36 · 29916 阅读 · 3 评论 -
10.MATLAB方差分析
方差分析是英国统计学家R.A.Fisher在20世纪20年代提出的一种统计方法,它有着非常广泛的应用。在生产实践和科学研究中,经验要研究生产条件或实验条件的改变对产品的质量或产量的影响。如在农业生产中,需要考虑品种、施肥量、种植密度等因素对农作物收获量的影响;又如某产品在不同的地区、不同的时期、,采用不同的销售方式,其销售量是否有差异。在诸多影响因素中,哪些是主要的,哪些是次要的,以及主要因素处于原创 2017-03-01 08:55:49 · 68136 阅读 · 5 评论 -
11.回归分析
在自然科学,工程技术和经济活动等各领域中,经常需要根据实验观测数据(xi,yi),i=1,2,.....,n研究因变量y与自变量x之间的关系。一般来说,变量之间的关系分为两种,一种是确定性的函数关系,另一种是不确定性关系,也称为相关关系。 回归分析是研究变量之间的相关关系的数学工具,主要解决以下几个方面的问题。 (1)根据变量观测数据确定某些变量之间的定量关系式,即建立回归方程并估计其中的原创 2017-03-04 08:49:14 · 14972 阅读 · 1 评论 -
12 聚类分析
物以类聚,人以群分,在现实世界中存在着大量的分类问题,聚类分析是研究分类问题的一种多元统计方法,在生物学、经济学、人口学、生态学、电子商务等很多方面有着非常广泛的应用。 聚类分析的目的是把分类对象按一定的规则分成若干类,这些类不是事先给定的,而是根据数据的特征确定的,对类的数目和类的结构不必做任何假定。同一类里面的这些对象在某种意义上倾向于彼此相似,而在不同类例的对象倾向于不相似。 这里原创 2017-03-06 08:46:57 · 5653 阅读 · 1 评论