算法设计
3.1 算法设计原理
本研究提出了一种基于机器视觉的直梯困人检测算法,通过分析直梯内的视频数据,自动检测困人事件并发出警报。算法的核心在于结合多种传感器数据和深度学习技术,提高检测的准确性和实时性。具体原理如下:
-
多传感器数据融合:结合加速度传感器和红外对射式传感器,实时监测电梯的运行状态和门的开关状态。
-
图像处理:通过布设在电梯轿厢内的摄像头,采集电梯内的图像数据,并进行预处理,包括背景剪除和动态前景提取。
-
深度学习:利用预训练的神经网络模型,对图像中的动态前景进行特征提取和识别,判断电梯内是否有人滞留。
-
行为识别:通过面部特征点检测和姿态估计算法,提取人员的面部表情和人体姿态特征,分析人员的情绪和行为模式。
-
多模态深度学习:将面部表情特征和行为特征向量输入多模态深度学习网络模型,进行综合训练和推理,得到最终的情绪和行为模式分析结果。
3.2 算法步骤
算法的具体步骤如下:
-
电梯运行状态监测:
-
采用布设在电梯轿厢上部的加速度传感器,实时获取电梯运行参数,包括电梯当前运行速度。
-
若当前电梯运行速度为零,则判断电梯处于停止状态,并开始记录电梯持续停止时间。
-
将电梯持续停止时间与第一预设时间阈值进行比较
-