电梯或者直梯困人的算法设计 原理 实现过程

算法设计

3.1 算法设计原理

本研究提出了一种基于机器视觉的直梯困人检测算法,通过分析直梯内的视频数据,自动检测困人事件并发出警报。算法的核心在于结合多种传感器数据和深度学习技术,提高检测的准确性和实时性。具体原理如下:

  1. 多传感器数据融合:结合加速度传感器和红外对射式传感器,实时监测电梯的运行状态和门的开关状态。

  2. 图像处理:通过布设在电梯轿厢内的摄像头,采集电梯内的图像数据,并进行预处理,包括背景剪除和动态前景提取。

  3. 深度学习:利用预训练的神经网络模型,对图像中的动态前景进行特征提取和识别,判断电梯内是否有人滞留。

  4. 行为识别:通过面部特征点检测和姿态估计算法,提取人员的面部表情和人体姿态特征,分析人员的情绪和行为模式。

  5. 多模态深度学习:将面部表情特征和行为特征向量输入多模态深度学习网络模型,进行综合训练和推理,得到最终的情绪和行为模式分析结果。

3.2 算法步骤

算法的具体步骤如下:

  1. 电梯运行状态监测

    • 采用布设在电梯轿厢上部的加速度传感器,实时获取电梯运行参数,包括电梯当前运行速度。

    • 若当前电梯运行速度为零,则判断电梯处于停止状态,并开始记录电梯持续停止时间。

    • 将电梯持续停止时间与第一预设时间阈值进行比较

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab_python22

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值