舒语---依依
码龄11年
关注
提问 私信
  • 博客:11,840
    11,840
    总访问量
  • 11
    原创
  • 425,106
    排名
  • 6
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2014-05-08
博客简介:

matlabjenny的博客

查看详细资料
个人成就
  • 获得12次点赞
  • 内容获得8次评论
  • 获得58次收藏
创作历程
  • 6篇
    2022年
  • 5篇
    2021年
成就勋章
TA的专栏
  • 日常工具使用
    3篇
  • 读书
  • 生活
  • 读书笔记
  • 源码解析
    5篇
  • 实体关系抽取
    3篇
兴趣领域 设置
  • 人工智能
    自然语言处理
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

367人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

mongo导出数据

小工具
原创
发布博客 2022.12.08 ·
1271 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

python 正则的一些使用

常用正则
原创
发布博客 2022.09.20 ·
220 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

windows下设置sublime text3 python环境

sublime text3 使用
原创
发布博客 2022.08.17 ·
460 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NLP中几点Trick

有时候魔改模型或者各种改损失函数等,都收效甚微,不如从数据出发、从bad case出发。阅读了https://blog.csdn.net/herosunly/category_9393702.html总结一些以后可以用的trick。1、NER任务时BIOE标注可能或比BIO标注更好一点,因为增加了更多的特征。2、在我们使用Bert的时候看数据集是否有些生僻字在bert的词表中没有。3、假设文本提取需要提取的种类很多or数据不平衡,可以用几个不同的模型进行分别提取。4、错别字纠正或者用拼音替换。5
原创
发布博客 2022.02.21 ·
850 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Keras及tf一些操作小记

在使用Keras写模型的时候总是会忘记一些操作,这里做一些小记,方便自己用到的时候查阅。(1)mask的生成及计算loss时的使用mask = Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), 'float32'))(tokens)#通过Lambda层创建mask,就不需要再输入mask了sub_heads_loss = K.binary_crossentropy(gold_sub_heads, pred_sub_heads)
原创
发布博客 2022.01.07 ·
1365 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Keras及tf一些操作小记

在使用Keras写模型的时候总是会忘记一些操作,这里做一些小记,方便自己用到的时候查阅。(1)mask的生成及计算loss时的使用mask = Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), 'float32'))(tokens)#通过Lambda层创建mask,就不需要再输入mask了sub_heads_loss = K.binary_crossentropy(gold_sub_heads, pred_sub_heads)
原创
发布博客 2022.01.07 ·
1365 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

CasRel的Keras代码学习

论文:A Novel Cascade Binary Tagging Framework for Relational Triple Extraction是一个三元组抽取的方法,此方法简单明了,作者源码是Keras写的,值得学习。模型结构如下:下面是主要的模型代码:def E2EModel(bert_config_path, bert_checkpoint_path, LR, num_rels): bert_model = load_trained_model_from_checkpoin
原创
发布博客 2022.01.07 ·
1816 阅读 ·
1 点赞 ·
7 评论 ·
6 收藏

Bert源码注解(三)

这一部分主要说一下run_squad.py,这一部分主要是做阅读理解任务的,数据集可以是SQuAD1.0或者2.0,数据集格式如下:参考:https://www.cnblogs.com/xuehuiping/p/12262700.html在SQuAD2.0版本中,添加了对应问题是否有答案的is_impossible参数,如果为False,则是可以在context中找到的答案,若为True,则会给出plausible_answers,...
原创
发布博客 2021.04.26 ·
450 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

Bert源码注解(二)

接上一篇。最主要的Transformer encoder结构代码如下:def transformer_model(input_tensor, attention_mask=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12,
原创
发布博客 2021.04.19 ·
241 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Bert源码注解(一)

这个是很早之前就应该做的工作,之前看过几遍源码,但是都没有详细的记录下来,Bert源码还是很优雅的,这次看记录下来方便以后回顾。先来看它的整体结构:├── README.md├── create_pretraining_data.py├── extract_features.py├── modeling.py├── modeling_test.py├── multilingual.md├── optimization.py├── optimization_test.py├── predi
原创
发布博客 2021.04.14 ·
372 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

文档级关系抽取介绍

**0、数据集介绍**文档级关系抽取的数据集有DocRED、SCIREX、CDR、GDR。GDA是生物医学领域的一个大规模数据集,它包含29192篇文档以供训练,其任务是预测基因和疾病概念之间的二元相互作用。CDR是生物医学领域的人类标注的化学疾病关系抽取数据集,由500份文档组成,该数据集的任务是预测化学和疾病概念之间的二元相互作用关系。SCIREX数据集是发表在ACL2020上的《SCIREX: A Challenge Dataset for Document-Level Informati
原创
发布博客 2021.04.09 ·
3240 阅读 ·
3 点赞 ·
0 评论 ·
26 收藏

实体关系抽取几篇论文

实体关系抽取几篇论文你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;增加了 图片拖拽 功能
原创
发布博客 2021.04.09 ·
1426 阅读 ·
3 点赞 ·
0 评论 ·
13 收藏