实体关系抽取几篇论文

1、《A Unified MRC Framework for Named Entity Recognition》

paper:https://arxiv.org/pdf/1910.11476.pdf
code:https://github.com/ShannonAI/mrc-for-flat-nested-ner

摘要:提出了一种基于MRC的框架提高了Flat NER和Nested NER的准确率,尤其是在Nested NER上效果的提升。

模型:基于阅读理解式的就需要构造query获得answer,先看query的构造:
在这里插入图片描述
这种query是实体类别的一种描述,尽可能的通用和精确,可以使用解释概念或者提及。这种构造query的方式加入了标签的先验知识。

模型输入(基于bert):
在这里插入图片描述
Span selection:

有两种形式:
一、使用两个 n-class 分类器,其中 n 表示输入序列『X』的长度,等同所有的 token 的数量,第一个 classifier 判断所有的 token 中哪个最有可能是 start index ,第二个 classifier 判断哪个最有可能是 end index 。由于,每个分类器都使用 softmax 作用于 X 的所有 token 上面,因此,只能得到单个范围的 span ;二、使用两个 binary 分类器,对每个token都进行预测,第一个 classifier 预测每个 token 是否是 start index ,第二个 classifier 预测每个 token 是否是 end index ,因此,这种策略允许输出多个 start index 和 end index ,这样就可以输出多个与 query 相关联的 span ,本文选择较为合理的第二种策略。

Start-End Matching

因为在文本中有同一个类别的多个实体(距离最近原则不适应嵌套的实体),我们需要找到匹配的起始位置。对于可能的start,end:
在这里插入图片描述加入一个二分类器来判断他们是否匹配:
在这里插入图片描述
损失函数:
在这里插入图片描述
**优点:**在query中加入了先验知识,可以解决Nested NER问题。

**缺点:**同一个样本要复制N(实体类别数目)次来构造所有实体类型的query。

2、《FLAT: Chinese NER Using Flat-Lattice Transformer》

paper:https://arxiv.org/pdf/2004.11795.pdf
code:https://github.com/LeeSureman/Flat-Lattice-Transformer

Lattice这种加入词汇信息的都属于词汇增强方式。

Lattice NER的缺点:

1、双向LSTM效率低,很难利用GPU并行计算;

2、只针对LSTM结构进行了改进,无法迁移至其他模型。

**摘要:**本文针对中文NER,提出了一种Flat-lattice Transformer结构,将lattice结构展平,利用transformer结构和精心设计的位置编码,能够充分利用lattice信息并有较好的并行能力。

Flat-Lattice框架:
在这里插入图片描述
这里为每一个token设计了head position and tail position。对于每一个字符,它的head和tail是相同的,对于一个词,head和tail分别为词的起始index。我们可以通过词典来获得所有字符的lattice,就可以将它扁平化了。

Spans的相对位置编码

Flat-lattice结构包含了不同长度的spans,为了编码每个span之间的内在联系,作者提出了spans的相对位置编码。对于在lattice中的2个span,xi xj,他们之间有三种关系,intersection ,inclusion and separation,是哪种关系取决于头和尾,论文使用一个Dense向量去建模他们的关系,而不是直接编码三种关系。它是通过头尾信息的连续变换来计算的, 由此,作者认为,这样不仅可以表示两个token之间的关系,还可以蕴含一些细节信息,比如,字符和词之间的距离。来看具体表示,Head[i]和tail[i]表示span x[i]的头和尾,4种距离可以表明x[i]和x[j]之间的关系:

在这里插入图片描述
举个例子:
在这里插入图片描述最后span的相对位置编码是一个简单的四个距离的非线性变换:
在这里插入图片描述
在这里插入图片描述
最后接一层CRF。

3、《A Novel Cascade Binary Tagging Framework for Relational Triple Extraction》

paper:https://arxiv.org/pdf/1909.03227.pdf
code:https://github.com/weizhepei/CasRel

摘要:提出了一种新的级联框架可以从句子中抽取多个关系三元组。

实体关系抽取中几种情况:
在这里插入图片描述

  • Normal:一个实体参与一个关系
  • EPO:同一对实体有两种不同的关系
  • SEO:一个实体参与到多个关系中

针对上述问题,论文提出 a novel cascade binary tagging framework(CASREL)来解决,直接来看模型框架:
在这里插入图片描述
本模型使用bert进行编码,然后找出句子中所有可能的subject,subject的开始和结束都用1表示,不是边界的词用0表示,使用就近原则来确定subject。然后对于每一个subject,对subject_head和subject_tail做平均,加到bert的编码中,加一个n-class分类器,遍历每一种关系,同时识别关系和object,如果存在某种关系,则获得object的起始位置,如果不存在,则起始位置都是0,如上图。

4、《A Frustratingly Easy Approach for Joint Entity and Relation Extraction》

paper:https://arxiv.org/pdf/2010.12812.pdf

先来介绍两种实体提取方法:

  • 片段排列+分类
    对片段进行排列,排列所有可能提取的span,然后加softmax对每一个span进行分类。
    在这里插入图片描述
    因为选择了所有可能的span,所以解决了Nested NER问题。但是对于含有T个token的文本,理论上有N=T(T+1)/2种片段排列。如果文本过长,就会产生大量的负样本,在实际中需要限制span的长度合理消减负样本。
  • 加入标志符信息
    如图所示,在实体前后加入标志符,强化实体表征,然后将[E1]和[/E1]向量contact再进行关系分类。
    在这里插入图片描述
    在这篇paper中,所采取的pipeline模型如下:
    在这里插入图片描述

(a) Entity model: 片段排列+分类
(b) Relation model: 对所有的实体pair进行关系分类。其中最重要的一点改进,就是将实体边界和类型作为标识符加入到实体Span前后,然后作为关系模型的input。例如,对于实体pair(Subject和Object)可分别在其对应的实体前后插入以下标识符:和</S:Md>:代表实体类型为Method的Subject,S是实体span的第一个token,/S是最后一个token; 和</O:Md>:代表实体类型为Method的Object,O是实体span的第一个token,/O是最后一个token;对于关系模型,对每个实体pair中第一个token的编码进行concatenate,然后进行SoftMax分类。
(c) 近似模型

需要指出的是,上述实体模型和关系模型分别采取两个独立的预训练模型进行编码(不共享参数)。

对于这种关系模型,我们不难发现:对每个实体pair都要轮流进行关系分类,也就是同一文本要进行多次编码。

为解决这一问题,提出了一种加速的近似模型(如上图c所示):可将实体边界和类型的标识符放入到文本之后,然后与原文对应实体共享位置向量。上图中相同的颜色代表共享相同的位置向量。实验结果表明,这样可以提速8-16倍,对精度的损失只有一点点,可忽略。

cross-sentence

为了加入上下文特征,有的做法是将上下文中句子加入进来,比如加入上下文3个句子。本文作者认为,一个好的预训练模型有能力捕捉长距离信息,作者简单的将上下文固定窗口的信息加入到实体模型和关系模型。即在左右两端分别加入(W-n)/2个词信息,n为文本长度,W为窗口大小,论文中实验W=100.

从实验结果上看,本文提出的方法较其他方法提高很大,为什么有如此好的表现,作者也进行了分析:

1.实体和关系模型的上下文表示本质上捕获不同的信息,因此共享它们的表示会影响效果;
2.在关系模型的输入层融合实体信息(包括边界信息和类型信息)至关重要;
3.利用跨句(cross-sentence)信息在这两项任务中都很有用;
4.更强大的预先训练语言模型可以带来进一步的收益。

由此,作者期望这个简单的模型能作为一个很强的基线,让我们重新思考联合训练在端到端关系抽取中的价值。

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
实体关系抽取自然语言处理领域中的一个重要研究方向,其主要目的是从文本中自动识别出实体及其之间的关系,为后续的知识图谱构建、信息检索、问答系统等应用提供基础支持。实体关系抽取技术的研究已经成为自然语言处理领域的热点之一,其应用前景广阔,对于推动人工智能技术的发展和应用具有重要意义。 实体关系抽取技术的研究背景可以追溯到上世纪八十年代,当时主要是基于规则和模板的方法进行实体和关系的识别。随着机器学习算法的发展,基于统计学习的方法逐渐成为主流,如基于支持向量机、条件随机场等的方法。近年来,深度学习技术的兴起,如基于卷积神经网络、循环神经网络等的方法,进一步提升了实体关系抽取的性能。 实体关系抽取技术的研究意义主要体现在以下几个方面: 1. 为知识图谱构建提供基础支持。知识图谱是一种将实体及其之间的关系以图形方式表示的知识库,是人工智能领域中的重要应用之一。实体关系抽取技术可以自动从文本中抽取实体及其之间的关系,为知识图谱的构建提供基础支持。 2. 为信息检索和问答系统提供支持。实体关系抽取技术可以自动从文本中抽取实体及其之间的关系,为信息检索和问答系统提供更加准确和全面的信息支持,提高系统的性能和用户体验。 3. 为自然语言理解和生成提供支持。实体关系抽取技术可以自动从文本中抽取实体及其之间的关系,为自然语言理解和生成提供更加准确和全面的语义信息支持,提高系统的自然度和可理解性。 总之,实体关系抽取技术的研究具有重要的理论和应用价值,对于推动人工智能技术的发展和应用具有重要意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值