前言
1.关于证件照,有好多种制作办法,最常见的是使用PS来做图像处理,或者下载各种证件照相关的APP,一键制作,基本的步骤是先按人脸为基准切出适合的尺寸,然后把人像给抠出来,对人像进行美化处理,然后替换上要使用的背景色,比如蓝色或红色。
2.我这里也按着上面的步骤来用代码实现,先是人脸检测,剪切照片,替换背景色,美化和修脸暂时还没有时间写完。
3.因为是考虑到要移植到移动端(安卓和iOS),这里使用了ncnn做推理加速库,之前做过一些APP,加速库都选了ncnn,不管在安卓或者iOS上,性能都是不错的。
4.我的开发环境是win10, vs2019, opencv4.5, ncnn,如果要启用GPU加速,所以用到VulkanSDK,实现语言是C++。
5.先上效果图,对于背景纯度的要求不高,如果使用场景背景复杂的话,也可以完美抠图。
原始图像:
原图:
自动剪切出来的证件照:
原图:
自动剪切出来的证件照:
一.项目创建
1.使用vs2019新建一个C++项目,把OpenC和NCNN库导入,NCNN可以下载官方编译好的库,我也会在后面上传我使用的库和源码以及用到的模型。
2.如果要启用GPU推理,就要安装VulkanSDK,安装的步骤可以参考我之前的博客。
二.人脸检测
1.人脸检测这里面使用 SCRFD ,它带眼睛,鼻子,嘴角五个关键点的坐标,这个可以用做证件照参考点,人脸检测库这个也可以用libfacedetection,效果都差不多,如果是移动端最好选择SCRFD。
代码实现:
推理代码
#include "scrfd.h"
#include <string.h>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <ncnn/cpu.h> //安卓才用到
static inline float intersection_area(const FaceObject& a, const FaceObject& b)
{
cv::Rect_<float> inter = a.rect & b.rect;
return inter.area();
}
static void qsort_descent_inplace(std::vector<FaceObject>& faceobjects, int left, int right)
{
int i = left;
int j = right;
float p = faceobjects[(left + right) / 2].prob;
while (i <= j)
{
while (faceobjects[i].prob > p)
i++;
while (faceobjects[j].prob < p)
j--;
if (i <= j)
{
// swap
std::swap(faceobjects[i], faceobjects[j]);
i++;
j--;
}
}
// #pragma omp parallel sections
{
// #pragma omp section
{
if (left < j) qsort_descent_inplace(faceobjects, left, j);
}
// #pragma omp section
{
if (i < right) qsort_descent_inplace(faceobjects, i, right);
}
}
}
static void qsort_descent_inplace(std::vector<FaceObject>& faceobjects)
{
if (faceobjects.empty())
return;
qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
}
static void nms_sorted_bboxes(const std::vector<FaceObject>& faceobjects, std::vector<int>& picked, float nms_threshold)
{
picked.clear();
const int n = faceobjects.size();
std::vector<float> areas(n);
for (int i = 0; i < n; i++)
{
areas[i] = faceobjects[i].rect.area();
}
for (int i = 0; i < n; i++)
{
const FaceObject& a = faceobjects[i];
int keep = 1;
for (int j = 0; j < (int)picked.size(); j++)
{
const FaceObject& b = faceobjects[picked[j]];
// intersection over union
float inter_area = intersection_area(a, b);
float union_area = areas[i] + areas[picked[j]] - inter_area;
// float IoU = inter_area / union_area
if (inter_area / union_area > nms_threshold)
keep = 0;
}
if (keep)
picked.push_back(i);
}
}
static ncnn::Mat generate_anchors(int base_size, const ncnn::Mat& ratios, const ncnn::Mat& scales)
{
int num_ratio = ratios.w;
int num_scale = scales.w;
ncnn::Mat anchors;
anchors.create(4, num_ratio * num_scale);
const float cx = 0;
const float cy = 0;
for (int i = 0; i < num_ratio; i++)
{
float ar = ratios[i];
int r_w = round(base_size / sqrt(ar));
int r_h = round(r_w * ar); //round(base_size * sqrt(ar));
for (int j = 0; j < num_scale; j++)
{
float scale = scales[j];
float rs_w = r_w * scale;
float rs_h = r_h * scale;
float* anchor = anchors.row(i * num_scale + j);
anchor[0] = cx - rs_w * 0.5f;
anchor[1] = cy - rs_h * 0.5f;
anchor[2] = cx + rs_w * 0.5f;
anchor[3] = cy + rs_h * 0.5f;
}
}
return anchors;
}
static void generate_proposals(const ncnn::Mat& anchors, int feat_stride, const ncnn::Mat& score_blob, const ncnn::Mat& bbox_blob, const ncnn::Mat& kps_blob, float prob_threshold, std::vector<FaceObject>& faceobjects)
{
int w = score_blob.w;
int h = score_blob.h;
// generate face proposal from bbox deltas and shifted anchors
const int num_anchors = anchors.h;
for (int q = 0; q < num_anchors; q++)
{
const float* anchor = anchors.row(q);
const ncnn::Mat score = score_blob.channel(q);
const ncnn::Mat bbox = bbox_blob.channel_range(q * 4, 4);
// shifted anchor
float anchor_y = anchor[1];
float anchor_w = anchor[2] - anchor[0];
float anchor_h = anchor[3] - anchor[1];
for (int i = 0; i < h; i++)
{
float anchor_x = anchor[0];
for (int j = 0; j < w; j++)
{
int index = i * w + j;
float prob = score[index];