概述
本文针对机器人的积木堆叠任务,提出了一个基于物理的下一个最佳动作选择框架,并使用了概率因果推理。研究表明,物理模拟和因果推理的结合能让机器人在不确定的情况下安全可靠地完成积木操作。
介绍
对于建筑、装配和拾取与放置等许多现实世界的应用而言,机器人物体操纵是一项至关重要的能力。然而,机器人面临着各种传感器和执行器的不确定性,这使得安全可靠地操纵物体成为一项挑战。
为了应对这一挑战,我们提出了一种结合物理模拟和概率因果推理的新型框架。具体地说,通过整合刚性系统的物理模拟和针对积木堆叠任务的因果贝叶斯网络(CBN)表述,将机器人的决策过程模拟为因果生成概率模型。
利用这一模型,机器人可以高精度地预测积木塔的稳定性。此外,考虑到传感器和执行器的不确定性,它还能以概率方式推断出下一个要放置的积木的位置。模拟实验的预测准确率高达 88.6%,任务成功率高达 94.2%,该系统的有效性已在实际机器演示中得到证实。
相关研究
利用因果关系实现机器人操纵
最近的研究趋势表明,因果关系在可靠的自主机器人系统中发挥着重要作用。具体来说,我们要解决以下问题。
机器学习方法在领域转移方面存在问题,但这可以通过利用因果关系来解决…(珍珠,2019)
可以成为实现问责、公平和责任等理想特征的重要工具。(Ganguly 等人,2023 年;Lake 等人,2017 年)
将因果关系应用于机器人操纵任务
另一方面,因果关系在机器人操纵任务中的应用最近才成为一个热点。具体