IGModel——提高基于 GNN与Attention 机制的方法在药物发现中的实用性

导言

深度学习在药物发现(发现治疗药物)领域的应用以及传统方法面临的挑战。

药物(尤其是我们将在本文中讨论的被称为抑制剂的药物)通过与在人体中发挥不良功能的蛋白质结合并改变这些蛋白质的功能来发挥治疗效果。因此,在设计药物时,必须优化这些结合的亲和力和药理特性,并准确预测蛋白质与药物之间的相互作用

近年来,人们尤其提倡使用深度学习来分析它们之间的相互作用。这类模型的突出例子包括利用CNN的 AtomNet、Kdeep 和 Pafnucy,以及利用二维卷积网络进行分析的 OnionNet。然而,这些方法实际对接蛋白质和药物的成功率很低,在实用性方面面临挑战。

传统模型的另一个问题是无法同时表示RMSD(蛋白质与候选药物结合方式的指标)和 pKd(两者相互作用强度的指标)。这意味着在讨论候选药物时,无法从多个角度利用信息,因此希望能有所改进。

该模型的新颖性

因此,本文提出了一种名为 IGModel的新模型。通过利用蛋白质和与之结合的候选药物的几何信息,与传统模型相比,该模型能够在单一框架内同时测量RMSD(与前面提到的结合精度相关的测量指标)和pKd(与前面提到的结合强度相关的测量指标)。在包含由 CASF-2016 基准和工具 PDBbind-CrossDocked-Core、DISCO 集和 AlphaFold2 生成的结构的数据集中,IGModel提高了药物对接的成功率,与传统模型相比,它的实用性的实用性有所提高

算法框架

整体模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知来者逆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值