概述
论文地址:https://arxiv.org/abs/2404.12926
人工智能的发展正在改变我们的学习方式。特别是使用大规模语言模型(LLM)的聊天机器人,通过提供个性化指导和即时反馈,极大地拓展了教育的可能性。
然而,在将 LLM 应用于教育领域方面仍存在许多挑战。例如,在物理解题中,计算数学公式和理解概念至关重要,但 LLM 在这些方面表现不佳。此外,当问题陈述包含图像时,也很难适当地处理这些信息。
因此,在本研究中,我们开发了一个 LLM 聊天机器人,专门用于印度高中物理选择题。通过使用强化学习和图像字幕,我们成功地大幅提高了 LLM 的解题和推理能力。这项研究为开启人工智能时代的教育革命之门迈出了一步。
相关研究
相关研究包括视觉语言模型(VLMs)的开发:Flamingo、GPT4、LLaVA 系列和 MiniGPT4 等模型能够处理视觉和语言综合信息,在视觉问题解答任务中表现出色。它们显示了此外,VisionLLM、Kosmos-2 和 Qwen-VL 等模型的视觉接地能力也有所提高。
对于从人类反馈中强化学习(RLHF)来说,最初的重点是文本总结和问题解答等任务,但后来逐渐被应用于改进通用语言模型。从人类反馈中强化学习(RLHF)最初的重点是文本摘要和问题解答等任务,后来逐渐应用于改进通用语言模型。
就图像说明而言,它们已被证明能有效减少 LLM 流形处理的局限性和模糊性。使用图像说明可为 LLM 提供更多上下文信息,并