概述
心理保健是现代社会一个日益严重的问题。例如,在日本,自杀是 10-39 岁人群的首要死因。此外,根据世界卫生组织(WHO)的数据,自杀是全球年轻人的首要死因。在此背景下,通过短信应用程序提供心理支持的短信咨询正备受关注。
与电话或电子邮件咨询相比,文本咨询的优点是更容易获得,尤其是对年轻一代而言,心理障碍较少。然而,目前缺乏有经验的辅导员。即使是那些有面对面、电话或电子邮件咨询经验的人,如果没有适当的指导和培训,也很难提供文本咨询。此外,能够提供这种适当指导的人员也很缺乏。
在此背景下,人们正在研究利用自然语言处理技术为心理健康提供支持的方法。其中,自动检测心理健康问题和障碍是一个备受关注的研究领域。在对话系统领域,已经开发出一些旨在改善心理健康的系统。另一方面,尽管最近在大规模语言建模方面的发展显示了对各种任务和领域的适应性,但使用大规模语言建模的咨询对话系统的性能尚未得到全面评估。
本文使用 GPT-4 构建了一个咨询对话系统,并由专业咨询师对生成的回复进行评估。为了生成适当的回复,我们通过与专业辅导员的角色扮演情景收集了辅导对话数据,并在语句中标注了辅导员的意图。为了评估在真实咨询情境中使用对话系统的可行性,第三方咨询师正在评估人类咨询师和 GPT-4 在角色扮演对话数据的相同情境中生成的回复是否恰当。
收集角色扮演对话并生成辅导员的回应
两名辅导员参与了角色扮演对话的收集工作,其中一人扮演求助者,另一人扮演辅导员,对话使用消息应用程序LINE 以日语进行。共收集了六次对话数据,下表所列的六个主题各一次。