降低程序运行时CPU和GPU峰值占用的技术方案
1. 引言
在现代计算密集型应用中,CPU和GPU的资源占用峰值常常成为系统瓶颈,可能导致性能下降、能耗增加甚至系统不稳定。本文将为Python开发者提供一套全面的技术方案,通过多种策略降低程序运行时的CPU和GPU峰值占用,同时允许适当延长运行时间以达到更平稳的资源利用。
2. 理解峰值占用问题
2.1 峰值占用的影响
CPU和GPU的峰值占用过高会带来多方面问题:
- 散热问题:高负载导致温度升高,可能触发降频机制
- 能耗增加:非线性增长的能耗曲线
- 系统不稳定:可能影响其他并发进程
- 资源争用:在多任务环境中降低整体吞吐量
2.2 监控工具
在优化前,我们需要准确监控资源使用情况:
CPU监控
import psutil
import time

订阅专栏 解锁全文
279

被折叠的 条评论
为什么被折叠?



