题目:
给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
输入:"abc"
输出:3
解释:三个回文子串: "a", "b", "c"
示例 2:
输入:"aaa"
输出:6
解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"
提示:
输入的字符串长度不会超过 1000 。
解题思路:动态规划
假设,s[i...j](i...j 表示这个区间内的字符包含 i、j)是回文串。那么 s[i-1...j+1] 只有在 s[i-1] == s[j+1] 的情况下,才是回文串。
状态定义
现在设 dp[i][j] 表示 s[i...j] 是否是回文串。
状态转移方程
接下来,我们分析一下,子串是回文串成立的情况:
-
如果 i == j,那么表示是单字符,单字符也是回文串;
-
如果 s[i] == s[j] 且 i+1=j(或i=j-1),那么这里表示两个字符且相同,那么同样是回文串;
-
如果 dp[i+1][j-1] == True,也就是 s[i+1...j-1] 是回文串时,若 s[i]==s[j],此时 dp[i][j] 同样也是回文串。
我们可以看到,第二、三种情况是可以合并在一起的。
当 s[i]==s[j],只要 i==j-1 或者 dp[i+1][j-1]==True 其中一个成立,dp[i][j] 都为 True,s[i...j] 是回文串。公式如下:
$dp[i][j] = True, \qquad if , (s[i] == s[j]) , and , (i==j-1 , or , dp[i+1][j-1])$
再看第一种情况,我们发现,其实 i==j 时,s[i] == s[j] 也是成立的,只是此时 i=j-0,。
那么这里再将第一种情况跟上面合并,也就是 i >= j - 1 或者 i - j >= -1 时,公式如下:
$dp[i][j] = True, \qquad if , (s[i] == s[j]) , and , (i-j>=-1 , or , dp[i+1][j-1])$
复杂度分析:
-
时间复杂度: $O(n^2)$
-
空间复杂度: $O(n^2)$, dp 数组的开销
Python代码如下:
class Solution:
def countSubstrings(self, s: str) -> int:
# 计数
count = 0
n = len(s)
# 定义 dp 数组,初始化为 False
dp = [[False] * n for _ in range(n)]
# 我们从右往左遍历,填充 dp 数组
for i in range(n-1, -1, -1):
for j in range(i, n):
# 根据文章得出的状态转移方程
if s[i]==s[j] and (i-j>=-1 or dp[i+1][j-1]):
dp[i][j] = True
count += 1
return count