Leetcode—【中等】647. 回文子串

题目:

给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

输入:"abc"

输出:3

解释:三个回文子串: "a", "b", "c"

示例 2:

输入:"aaa"

输出:6

解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"

提示:

输入的字符串长度不会超过 1000 。

解题思路:动态规划

假设,s[i...j](i...j 表示这个区间内的字符包含 i、j)是回文串。那么 s[i-1...j+1] 只有在 s[i-1] == s[j+1] 的情况下,才是回文串。

状态定义

现在设 dp[i][j] 表示 s[i...j] 是否是回文串。

状态转移方程

接下来,我们分析一下,子串是回文串成立的情况:

  • 如果 i == j,那么表示是单字符,单字符也是回文串;

  • 如果 s[i] == s[j] 且 i+1=j(或i=j-1),那么这里表示两个字符且相同,那么同样是回文串;

  • 如果 dp[i+1][j-1] == True,也就是 s[i+1...j-1] 是回文串时,若 s[i]==s[j],此时 dp[i][j] 同样也是回文串。

我们可以看到,第二、三种情况是可以合并在一起的。

当 s[i]==s[j],只要 i==j-1 或者 dp[i+1][j-1]==True 其中一个成立,dp[i][j] 都为 True,s[i...j] 是回文串。公式如下:

$dp[i][j] = True, \qquad if , (s[i] == s[j]) , and , (i==j-1 , or , dp[i+1][j-1])$

再看第一种情况,我们发现,其实 i==j 时,s[i] == s[j] 也是成立的,只是此时 i=j-0,。

那么这里再将第一种情况跟上面合并,也就是 i >= j - 1 或者 i - j >= -1 时,公式如下:

$dp[i][j] = True, \qquad if , (s[i] == s[j]) , and , (i-j>=-1 , or , dp[i+1][j-1])$

复杂度分析:

  • 时间复杂度: $O(n^2)$

  • 空间复杂度: $O(n^2)$, dp 数组的开销

Python代码如下:

class Solution:
    def countSubstrings(self, s: str) -> int:
        # 计数
        count = 0
        n = len(s)
        # 定义 dp 数组,初始化为 False
        dp = [[False] * n for _ in range(n)]
        # 我们从右往左遍历,填充 dp 数组
        for i in range(n-1, -1, -1):
            for j in range(i, n):
                # 根据文章得出的状态转移方程
                if s[i]==s[j] and (i-j>=-1 or dp[i+1][j-1]):
                    dp[i][j] = True
                    count += 1

        return count

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值