妙用分部积分处理双重积分
在大学数学分析中,我们学习了分部积分方法,即
在大学时,我们常用该方法进行积分求解,例如带有指数函数的函数的积分等,但在很多地方巧用该方法也能够达到神奇的效果。下面,我们以一道微分方程求解问题切入,来感受一下分部积分方法的效果。
已知:
求证:
,其中
和
为常数。
证明:从题目很容易可以得到如下结果
但由于不知道的具体表达式,最后一个双重积分无法化简,为进一步化简上式,则可采用分部积分方法对上式进行处理,具体如下。
取:
则有
将上式代入的表达式可得
证毕。
通过上述证明过程,我们可以看到,借助分部积分方法,我们成功对一个二阶微分方程进行了求解,并将结果中的双重积分去除了一重,化简为一个仅含有单重积分的表达式。上述问题的求解算是分部积分的一个应用,为问题的求解和结果的简化带来了不少好处。以后在处理积分相关问题难以着手时,不妨考虑从分部积分的角度进行尝试,也许会得到意想不到的效果。