妙用分部积分处理双重积分

妙用分部积分处理双重积分

在大学数学分析中,我们学习了分部积分方法,即

\int u^\prime (x) v(x) dx = u(x)v(x) - \int u(x)v^\prime (x) dx

在大学时,我们常用该方法进行积分求解,例如带有指数函数的函数的积分等,但在很多地方巧用该方法也能够达到神奇的效果。下面,我们以一道微分方程求解问题切入,来感受一下分部积分方法的效果。

已知:\dfrac{d^2 y}{dt^2} = - u(t)

求证:y = C_2 + C_1t - \int_0^t (t - \xi) u(\xi) d\xi,其中C_1C_2为常数。

 证明:从题目很容易可以得到如下结果

\begin{align} \ddot{y} & = -u(t) \nonumber \\ \dot{y} & = - \int_0^t u(\tau) d\tau + C_1 = z(t) \nonumber \\ y & = C_2 + \int_0^t z(\tau) d\tau \nonumber \\ & = C_2 + \int_0^t \left[ -\int_0^\tau u(\xi)d\xi + C_1 \right ] d\tau \nonumber \\ & = C_2 + \int_0^t C_1d\tau - \int_0^t \int_0^\tau u(\xi) d\xi d\tau \nonumber \\ & = C_2 + C_1t - \int_0^t \int_0^\tau u(\xi) d\xi d\tau \nonumber \end{align}

但由于不知道u(t)的具体表达式,最后一个双重积分无法化简,为进一步化简上式,则可采用分部积分方法对上式进行处理,具体如下。

取:

\begin{align} \mathbb{I} & = \int_0^t \int_0^\tau u(\xi) d\xi d\tau \nonumber \\ v(\tau) & = \int_0^\tau u(\xi) d\xi \nonumber \end{align}

则有

\begin{align} \mathbb{I} & = \int_0^t v(\tau) d\tau \nonumber \\ & = \left[ \tau v(\tau) \right ]_0^t - \int_0^t \tau v^\prime (\tau)d\tau \nonumber \\ & = tv(t) - \int_0^t \tau u(\tau) d\tau \nonumber \\ & = t\int_0^t u(\xi) d\xi - \int_0^t \xi u(\xi) d\xi \nonumber \\ & = \int_0^t (t - \xi) u(\xi) d\xi \nonumber \end{align}

将上式代入y的表达式可得

y = C_2 + C_1t - \int_0^t (t - \xi) u(\xi) d\xi

证毕。

通过上述证明过程,我们可以看到,借助分部积分方法,我们成功对一个二阶微分方程进行了求解,并将结果中的双重积分去除了一重,化简为一个仅含有单重积分的表达式。上述问题的求解算是分部积分的一个应用,为问题的求解和结果的简化带来了不少好处。以后在处理积分相关问题难以着手时,不妨考虑从分部积分的角度进行尝试,也许会得到意想不到的效果。

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值