怎么解决数据不均衡的问题

解决数据不均衡问题的方法

数据不均衡(Class Imbalance)是机器学习中常见的挑战,指训练数据中不同类别的样本数量差异较大。这种情况会导致模型偏向多数类,而对少数类的预测性能较差(如医学诊断中的罕见病、金融欺诈检测等场景)。以下从数据处理、算法改进、评估指标优化三个维度,系统介绍解决数据不均衡的方法:

一、数据层面:重采样(Resampling)

1. 欠采样(Undersampling)
  • 随机欠采样:随机删除多数类样本,直到与少数类数量接近。
    优点:简单高效;缺点:可能丢失多数类的重要信息。
    工具imblearn.RandomUnderSampler

  • 欠采样优化算法

    • Tomek Links:删除与少数类样本最近的多数类样本(即 “边界样本”)。
    • Edited Nearest Neighbors (ENN):删除被 KNN 错误分类的多数类样本。
      工具imblearn.TomekLinksimblearn.ENN
2. 过采样(Oversampling)
  • 随机过采样:复制少数类样本,直到与多数类数量接近。
    优点:简单直接;缺点:易导致过拟合。
    工具imblearn.RandomOverSampler

  • 合成过采样

    • SMOTE (Synthe
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值